检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工程大学计算机科学与技术学院,黑龙江哈尔滨150001 [2]西北工业大学航空学院,陕西西安710072
出 处:《哈尔滨工程大学学报》2017年第12期1928-1936,共9页Journal of Harbin Engineering University
基 金:国家重点研发计划(2016YFB1000400);国家自然科学基金项目(61573284);中央高校自由探索基金项目(HEUCF100606)
摘 要:为了研究有效的特征提取和精确的空间结构化学习对提升场景解析效果的作用,本文提高出基于全卷积神经网络空间结构化编码深度网络,网络内嵌的结构化学习层有机地结合了图模型网络和空间结构化编码算法,算法能够比较准确地描述物体所处空间的物体分布以及物体间的空间位置关系。通过空间结构化编码深度网络,网络不仅能够提取包含多层形状信息的多维视觉特征,而且可以生成包含结构化信息的空间关系特征,从而得到更为准确表达图像语义信息的混合特征。实验结果表明:在SIFT FLOW和PASCAL VOC 2012标准数据集上,空间结构化编码深度网络较现有方法能够显著地提升场景解析的准确率。In order to improve the performance of scene parsing by efficient feature extraction and accurate spatial structure learning with regard to fully eonvolutional neural networks (FCNNs) , a novel neural network architecture, called spatial structure encoded deep networks ( SSEDNs ), is proposed. The embedded structural learning layer can organically combine a graphical model and a spatial structure encoded algorithm, which can describe the spatial distribution of objects and the spatial relationship among objects. Through the SSEDNs, not only the hierarchical visual features capturing multiple shape information were extracted, but the spatial relationship features containing structural information were also generated. Therefore, the hybrid features representing the semantic information of images could be obtained by fuzing the above two multimodal features. The experimental results prove that the SS- EDNs could significantly improve the accuracy of scene parsing for the SIFT FLOW and PASCAL VOC 2012 data- set, in comparison to most state-of-the-art methods.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44