检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国电力工程顾问集团东北电力设计院有限公司,吉林长春130021 [2]国网吉林省电力有限公司培训中心,吉林长春130021 [3]东北电力大学电气工程学院,吉林吉林132012
出 处:《可再生能源》2018年第1期85-90,共6页Renewable Energy Resources
基 金:国家高技术研究发展计划"863"资助项目(SS2014AA052502);国家自然科学基金资助项目(51507027)
摘 要:由于风速具有间歇性、随机性及波动性等特点,导致大规模风电并网对电力系统的安全、稳定运行带来严重影响。文章提出一种基于最大相关最小冗余(Maximum Correlation Minimum Redundancy,MRMR)的离群鲁棒极限学习机(Outlier Robust Extreme Learning Machine,ORELM)的短期风速预测新方法。首先分析影响风速的属性特征,采用MRMR算法来衡量不同风速属性特征与风速的相关性,进而确定风速属性特征的输入维度;然后对极限学习机(Extreme Learning Machine,ELM)进行优化,构建ORELM风速预测模型。最后以美国某大型风电场实测数据为依据进行风速预测,仿真结果表明该方法具有较高的预测精度。Because of the characteristics of intermittence, randomness and fluctuation, the large-scale wind power integration has important influence on the security and stable operation of power system. This paper puts forward a new method of short-term wind speed prediction of outlier robust extreme learning machine (Outlier Robust Extreme Learning Machine, ORELM)based on maximum correlation and minimum redundancy (Maximum Correlation Minimum Redundancy, MRMR)algorithm. Firstly, the attributes of wind speed are analyzed, and the MRMR algorithm is used to measure the correlation between the characteristics of different wind speed attributes and wind speed. And the input dimension of wind speed attributes is determined. Then,the extreme learning machine (Extreme Learning Machine, ELM)is optimized, and the ORELM wind speed prediction model is constructed. Finally, the wind speed prediction is carried out based on the measured data of a large wind farm in Northeast China. The simulation results show that the proposed method has higher prediction accuracy.
分 类 号:TK81[动力工程及工程热物理—流体机械及工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249