出 处:《Chinese Chemical Letters》2017年第12期2180-2194,共15页中国化学快报(英文版)
基 金:supported by the National Key Research and Development Program(Nos.2016YFA0202500,2016YFA0200102);the National Natural Science Foundation of China(No.21676160);China Postdoctoral Science Foundation(No.2017M620049)
摘 要:To meet the ever-increasing energy demands, advanced electrode materials are strongly requested for the exploration of advanced energy storage and conversion technologies, such as Li-ion batteries, Li-S batteries, Li-]Zn-air batteries, supercapacitors, dye-sensitized solar cells, and other electrocatalysis process (e.g., oxygen reductionlevolution reaction, hydrogen evolution reaction). Transition metal chalcogenides (TMCs, Le., sulfides and selenides) are forcefully considered as an emerging candidate, owing to their unique physical and chemical properties. Moreover, the integration of TMCs with conductive graphene host has enabled the significant improvement of electrochemical performance of devices. In this review, the recent research progress on TMC]graphene composites for applications in energy storage and conversion devices is summarized. The preparation process of TMC]graphene nanocomposites is also included. In order to promote an in-depth understanding of performance improvement for TMC/graphene materials, the operating principle of various devices and technologies are briefly presented. Finally, the perspectives are given on the design and construction of advanced electrode materials.To meet the ever-increasing energy demands, advanced electrode materials are strongly requested for the exploration of advanced energy storage and conversion technologies, such as Li-ion batteries, Li-S batteries, Li-]Zn-air batteries, supercapacitors, dye-sensitized solar cells, and other electrocatalysis process (e.g., oxygen reductionlevolution reaction, hydrogen evolution reaction). Transition metal chalcogenides (TMCs, Le., sulfides and selenides) are forcefully considered as an emerging candidate, owing to their unique physical and chemical properties. Moreover, the integration of TMCs with conductive graphene host has enabled the significant improvement of electrochemical performance of devices. In this review, the recent research progress on TMC]graphene composites for applications in energy storage and conversion devices is summarized. The preparation process of TMC]graphene nanocomposites is also included. In order to promote an in-depth understanding of performance improvement for TMC/graphene materials, the operating principle of various devices and technologies are briefly presented. Finally, the perspectives are given on the design and construction of advanced electrode materials.
关 键 词:Transition metal chalcogenidesGraphene/Sulfides/SelenidesLithium ion batteriesLithium sulfur batteriesLithium oxygen batteriesZinc air batteriesSupercapacitorsElectrocatalysisOxygen reduction/evolution reaction
分 类 号:TB332[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...