深度图像分割的城市区域倾斜影像密集匹配点云滤波算法  被引量:8

Filtering Urban Point Cloud from Dense Image Matching Based on Depth Image Segmentation

在线阅读下载全文

作  者:季虹良 戴晨光[1] 张鑫禄 莫德林[1] 仇多兵 

机构地区:[1]信息工程大学,河南郑州450001

出  处:《测绘科学技术学报》2017年第5期491-495,共5页Journal of Geomatics Science and Technology

基  金:对地观测技术国家测绘地理信息局重点实验室开放基金项目(K201508)

摘  要:倾斜摄影测量作为一个新兴领域发展势头迅猛,在众多领域得到了广泛应用。但倾斜影像密集匹配点云处理技术研究却相对较少。倾斜影像密集匹配点云分布不均匀、表面粗糙,因而传统的激光扫描点云处理算法在用于倾斜影像密集匹配点云处理时的适用性较低。本文从倾斜影像密集匹配点云特点出发,提出了一种利用点云高程信息生成深度图像提取建筑物非连通区域,在全局范围选取种子点实现多种子点区域生长的点云快速滤波算法。实验结果表明,该算法滤波效果好、速度快,可以改善密集匹配点云部分地物底部边缘不清晰引起错分和区域生长无法分割建筑物非连通区域的问题。Oblique photogrammetry is a new and rapidly developing technique which is widely used in many fields,but the study of dense matching point cloud processing technology is less. The typical point cloud filtering algorithms for laser scanning data are not suitable for dense matching point cloud because of the inhomogeneous point distribution and rough surface in dense matching data. In the light of the characteristics of dense point cloud,a fast point cloud filtering method is proposed. Firstly,depth image is generated from elevation data where the disconnected area is extracted using spatial features. Then,the depth image is segmented by region growing using multiple global seeds. Experimental results show that this algorithm is effective and efficient in filtering dense matching point cloud,especially in solving the problem that the bottom edges of the objects are not clear and the problem that region growing cannot perform well in the disconnected area in the buildings.

关 键 词:倾斜影像 密集匹配点云 深度图像 区域生长 滤波 

分 类 号:P237[天文地球—摄影测量与遥感]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象