基于文本挖掘和自动分类的法院裁判决策支持系统设计  被引量:19

Count Judgment Decision Support System Based on Text-mining and Machine Learning

在线阅读下载全文

作  者:朱青[1,2,4] 卫柯臻[1,2,4] 丁兰琳 黎建强 

机构地区:[1]陕西师范大学国际商学院,陕西西安710119 [2]陕西师范大学交叉过程感知与控制实验室,陕西西安710119 [3]香港城市大学管理科学系,中国香港 [4]西安交通大学管理学院,陕西西安710049 [5]西安交通大学经济金融学院,陕西西安710049

出  处:《中国管理科学》2018年第1期170-178,共9页Chinese Journal of Management Science

基  金:科技部国家软科学研究计划项(2012GXS2D027)

摘  要:在许多大陆法系国家,不断产生的新型法律关系使得成文法无法及时制定和修改的缺陷逐渐显现。与此同时,世界各国纠纷诉讼的数目也在急剧增长,所以,很多国家面临如何在保证审判质量的前提下提高司法系统审判效率的问题。因此,在进行制度改革的同时,建立决策支持系统将会有效地辅助司法判决。本文以中国的医疗损害诉讼文本为例,使用文本挖掘和自动分类技术提出了一个法院裁判决策支持系统(CJ-DSS),该系统可以依据以往判例预测新诉讼文本的判决结果:驳回与非驳回。结合案例,本文研究发现,组合特征提取法确实能够改进和提高分类器的分类性能,而且针对支持向量机(SVM)、人工神经网络(ANN)、K最近邻(KNN)三种不同的分类器,文档词频-卡方(DF-CHI)组合特征提取法对性能的改进程度有所差异,其中ANN的性能改进最高。除此之外,集成学习后该系统的分类性能更加稳定,显著优于单一分类器,F1值达到93.3%。In many other countries with the continental legal system, the constant generation of new legal relationships makes, the defect of statute law which is unable to be timely formulate and modify gradually become obvious. As the number of dispute lawsuit rapidly grows, many countries in the world face the problem how to improve the efficiency of the judicial system under the premise of guaranteeing the quality of the trial. There{ore, in addition to reforming the system, the decision support system will effectively improve judicial decisions. In this paper, medical damage judgment documents in China are taken as example, and a court judg- ment decision support system (CJ-DSS) is proposed based on text mining and the automatic classification technology. The system can predict the trail results of the new lawsuit texts according to the previous cases verdict: rejected and no rejected. By combining different feature extraction methods (DF, Chi-square and DF-CHI feature combination extraction method) and classifiers (SVM, ANN and KNN), multiple combinations that meet the expected performance as the base learning machines are selected. Based on the theory of Delphi Method, integrated learning is used to predict new cases. Integrated learning refers to constructing a new model and using the prediction result of base learning machines that have met expecta- tions as input after proper training, and finally outputting a prediction result with maximum probability through linear or non-linear calculations. At the same time, by combining with real cases, it is found that the combination feature extraction method can indeed improve the classifier's performance, especially for SVM, ANN and KNN classifiers. In addition, the system classification performance became more consistent after integrated learning. The best performance reached 93.3 %, which significantly increased system accuracy. This paper's data source is the "BeiDaFaBao" legal database. "Medical malpractice" is used as the keyword and more

关 键 词:文本挖掘 自动分类 决策支持系统 CJ-DSS 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象