检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京化工大学信息科学与技术学院,北京100029 [2]武汉大学国际软件学院,武汉430074
出 处:《北京化工大学学报(自然科学版)》2018年第1期72-77,共6页Journal of Beijing University of Chemical Technology(Natural Science Edition)
基 金:国家科技支撑计划(2015BAK03B04)
摘 要:针对现有实体对齐方法大多以本体模式匹配为基础,处理异构关联数据集间对齐关系存在局限性且实体链接缺失问题严重的现状,在分析关联数据语义的基础上,提出了一种独立于模式的基于属性语义特征的实体对齐方法,对关联数据集中实体属性根据语义标签特征及统计特征建模,并采用有监督的可变样本集VS-Adaboost算法实现分类器优化。实验结果表明,该方法的时间效率、准确率、查全率较高,F测度效果较好。Entity alignment is the key technology needed to realize knowledge graph construction, information integration and sharing. Most of the existing entity alignment approaches are based on ontology pattern matching, and have limitations when dealing with the alignment of heterogeneous linked open data(LOD) , where the problem of missing entity links is serious. In this paper, a schema-independent entity alignment approach based on attribute semantic features is proposed. The entity attributes of the LOD are modeled according to their semantic label characteristics and statistical features. The supervised variable set VS-Adaboost algorithm is used to realize classifier optimization. The experiments executed on selected datasets show that compared with conventional methods the approach is more efficient and has better efficacy in terms of accuracy, recall and F measurement.
关 键 词:关联开放数据 语义网 机器学习 VS-Adaboost
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30