检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]天津大学机械工程学院,天津300350 [2]天津市非线性动力学与控制重点实验室,天津300350
出 处:《天津大学学报(自然科学与工程技术版)》2018年第2期167-174,共8页Journal of Tianjin University:Science and Technology
基 金:国家重点基础研究发展计划(973计划)资助项目(2013CB035403);国家自然科学基金资助项目(51175370;51675368);天津市应用基础与前沿技术研究计划重点资助项目(13JCZDJC34300);天津市应用基础与前沿技术研究计划资助项目(14JCYBJC18800)~~
摘 要:研究了一类工程领域广泛应用的环状周期结构的弹性振动特性,重点分析了基础运动对弹性振动稳定性和固有频率分裂的影响.首先在随动坐标系下采用Hamilton原理建立了计入基础运动和面内切向及径向弹性振动的偏微分形式的动力学模型.然后,应用伽辽金方法将其离散得到一组常微分动力学方程.根据经典振动理论,得到了系统特征值的数学表达.最后采用数值方法计算了系统的特征值.根据特征值的实虚部取值预测了不稳定域和固有频率分裂规律,并用Runge-Kutta法给出稳定性的数值验证.该研究为陀螺仪等呈现平面或空间基础运动的环状周期结构的动态性能的改善提供了理论借鉴.The elastic vibration characteristic of a ring-shaped periodic structure intensively used in engineering prac-tice was examined,where the focus was on the effect of basic movement on elastic vibration stability and naturalfrequency splitting. Firstly,a partial differential dynamic model incorporating basic movement and in-plane tangen-tial as well as radial elastic vibrations was established in moving frame using Hamilton's principle. Then,a set of ordinary differential dynamic equations were formulated using Galerkin method. The mathematical expressions of eigenvalues of the system were derived according to the classical vibration theory. Finally,the eigenvalues were cal-culated by use of numerical method. Unstable areas and the rules of natural frequency splitting were predicted by means of real and imaginary parts of eigenvalues. The stability was verified by numerical calculation with Runge-Kutta method. This research provides theoretical reference for the dynamic performance improvement of microgyro-scope or other ring-shaped periodic structures undergoing two- or three-dimensional basic movement.
分 类 号:TH113.1[机械工程—机械设计及理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15