稀薄里德伯原子气体中的两体纠缠  被引量:1

Two-body entanglement in a dilute gas of Rydberg atoms

在线阅读下载全文

作  者:张秦榕 王彬彬 张孟龙 严冬[1,2] Zhang Qin-Rong;Wang Bin-Bin;Zhang Meng-Long;Yan Dong(School of Science and Key Laboratory of Materials Design and Quantum Simulation, Changchun University, Changchun 130022, China;Center for Quantum Sciences, Northeast Normal University, Changchun 130117, China)

机构地区:[1]长春大学理学院,材料设计与量子模拟实验室,长春130022 [2]东北师范大学量子科学中心,长春130117

出  处:《物理学报》2018年第3期104-110,共7页Acta Physica Sinica

基  金:国家自然科学基金(批准号:11204019)、吉林省教育厅自然科学基金(批准号:2016287)和博士后基金(批准号:2015M570260)资助的课题.

摘  要:量子纠缠是量子信息处理和量子计算中不可或缺的物理资源,制备稳定可操控的量子纠缠是研究的热点之一.里德伯原子具有不同于普通中性原子的特点,长寿命和原子之间强烈的偶极相互作用,使得它成为量子信息处理和量子计算的最优候选者.本文在稀薄里德伯原子气体中,构建了空间四面体排布的里德伯原子模型(空间等距的四个原子模型),通过数值求解主方程来研究两体纠缠和里德伯激发的稳态和瞬态动力学性质,发现偶极阻塞机制下的量子纠缠最大,其他满足反偶极阻塞条件的高阶激发引起的纠缠较小,进而从理论上分析了这两种机制下量子纠缠的物理实质.Since the establishment of quantum mechanics, quantum entanglement has become one of the most important realms in quantum physics. On the one hand, it reflects some of the most fascinating features, such as quantum coherence, probability and non-locality and so on. On the other hand, it proves to be an indispensable resource of quantum information processing and quantum computation, which is considered to greatly promote the development of human science and technology. In the past decades, inspired by advances in quantum information theory and quantum physics, people have been searching for suitable systems with great enthusiasm to prepare the robust and manipulable quantum entanglement. Recently, Rydberg atoms have been considered to be a good candidate for many quantum information and quantum computation tasks. Compared with general neutral atoms, Rydberg atoms with large principal quantum number have several advantages in the quantum information and computation service. Firstly, they have finite lifetimes much larger than general neutral atoms, which indicates that the long-time entanglement between Rydberg atoms can be achieved. Secondly, due to the high-excitation level, Rydberg-excitation atoms have long-ranged dipole-dipole interaction much stronger than ground state atoms. This strong atomic interaction leads to the so-called blockade effect: when one atom is excited to Rydberg level, the excitation of the neighboring atoms will be strictly suppressed due to the energy shift induced by the strong atomic interaction. On the contrast, if the energy shift is compensated for by the detuning between the energy levels and the driven laser field, these atoms can be excited with higher probability simultaneously. These effects imply that Rydberg atoms provide an excellent platform for investigating the quantum information and quantum computation process, and many important achievements based on them have been achieved. Encouraged by these researches on entanglement and Rydberg atoms, in this paper, we study the

关 键 词:量子纠缠 共生纠缠 里德伯原子 偶极-偶极相互作用 

分 类 号:O413[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象