基于系数矩阵弧微分的时间序列相似度量  

Similarity Measurement of Time Series Based on Coefficient Matrix Arc Differential

在线阅读下载全文

作  者:王智博[1] 林意[1] 曹洋洋[1] 

机构地区:[1]江南大学数字媒体学院,江苏无锡214122

出  处:《计算机工程》2018年第2期9-16,共8页Computer Engineering

摘  要:传统时间序列相似度量算法在时间序列发生平移、时间轴伸缩等情况下,需要时间对齐等人工干预,并且时间复杂度较高,不利于后续数据挖掘处理。为此,基于系数矩阵弧微分提出时间序列相似度量算法。引入回归分析中的最小二乘思想,通过构建系数矩阵获取时间序列形态属性向量基,实现序列曲线的连续化。在此基础上,应用连续函数的弧微分与曲率半径的关系进行时间序列的相似度量。实验结果表明,该算法具有较强的鲁棒性,不仅能实现微观意义上序列之间的相似度量(距离相近),而且能够完成宏观意义上的相似度量(形态相近)。The traditional similarity measurement algorithm of time series needs human intervention such as time alignment,which has higher time complexity and is bad for following data mining.For the problems above,this paper puts forward similarity measurement algorithm of time series based on coefficient matrix arc differential.It introduces the thought of least-square method in regression analysis,obtains vector basement of time series form attribution by constructing matrix and achieves the continuous sequence curve simultaneously.On this basis,it implements similarity measurement of time series finally by using the relationship of arc differential and curvature radius of the continuous function.Experimental results show that the proposed algorithm has stronger robustness,which can not only achieve similarity measurement in microscopic(lies in distance proximity),but also achieve similarity measurement in macroscopic(lies in same configuration).

关 键 词:时间序列 相似度量 最小二乘法 系数矩阵 弧微分 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象