检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Mathematics, Northwest Normal University Lanzhou 730070, China
出 处:《Algebra Colloquium》2017年第4期577-602,共26页代数集刊(英文版)
基 金:This research was partially supported by the National Natural Science Foundation of China (11361051, 11761060), Program for New Century Excellent Talents in University (NCET-13-0957), and Improvement of Young Teachers' Scientific Research Ability (NWNU-LKQN-16-5).
摘 要:Given a cotorsion pair (X, Y) in an abelian category A, we define cotorsion pairs (XN,dgYN) and (dgXN, YN) in the category CN(A) of N-complexes on A. We prove that if the cotorsion pair (X, Y) is complete and hereditary in a bicomplete abelian category, then both of the induced cotorsion pairs are complete, compatible and hereditary. We also create complete cotorsion pairs (dwXN, (dwXN)⊥), (eXXN, (exXN)⊥) and (⊥(dwYN), dwYN), (X(exYN), exYN) in a termwise manner by starting with a cotorsion pair (X,Y) that is cogenerated by a set. As applications of these results, we obtain more abelian model structures from the cotorsion pairs.Given a cotorsion pair (X, Y) in an abelian category A, we define cotorsion pairs (XN,dgYN) and (dgXN, YN) in the category CN(A) of N-complexes on A. We prove that if the cotorsion pair (X, Y) is complete and hereditary in a bicomplete abelian category, then both of the induced cotorsion pairs are complete, compatible and hereditary. We also create complete cotorsion pairs (dwXN, (dwXN)⊥), (eXXN, (exXN)⊥) and (⊥(dwYN), dwYN), (X(exYN), exYN) in a termwise manner by starting with a cotorsion pair (X,Y) that is cogenerated by a set. As applications of these results, we obtain more abelian model structures from the cotorsion pairs.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.144.163