基于随机森林方法的地铁车门故障诊断  被引量:10

Subway Door Fault Diagnosis Based on Random Forest Method

在线阅读下载全文

作  者:陈苏雨 方宇[1] 胡定玉[1] CHEN Su-yu;FANG Yu;HU Ding-yu(School of Urban Rail Transportation, Shanghai University of Engineering Science, Shanghai 201620, China)

机构地区:[1]上海工程技术大学城市轨道交通学院,上海201620

出  处:《测控技术》2018年第2期20-24,共5页Measurement & Control Technology

基  金:上海市科委科研计划资助项目(122101501200);上海工程技术大学研究生科研创新项目(E3-0903-16-01250)

摘  要:针对现有地铁车门故障诊断方法存在的诊断速度慢以及大量故障检修数据未得到合理利用等问题,提出一种基于信息增益率的随机森林故障诊断方法。该方法将地铁车门历史故障数据集转化成决策表,通过Bootstrap重抽样,建立多棵基于信息增益率的决策树,形成随机森林故障诊断模型,实现地铁车门故障的快速诊断。且随着故障数据的增加,其故障诊断模型可以自动更新完善。通过地铁车门实际故障数据,验证了该方法的有效性。同时,通过对随机森林模型中决策树的数目讨论分析,确定了该方法模型的最优设计结构。In order to solve the problems of the existing subway door fault diagnosis methods such as slow diagnosisand the failure of reasonable utilization of a large number of troubleshooting data, a random forest fault diagnosismethod based on information gain ratio is proposed. This method historical of fault data set subwaydoors is transformed into decision table, and multiple decision trees based on the information gain ratio is builtthrough Bootstrap re-sampling to form a random forest fault diagnosis model, which can realize the rapid diagnosisof subway doors faults. With the increase of fault data, the fault diagnosis model can be automatically updatedand perfected. The effectiveness of the method is verified by the actual fault data of subway door. At thesame time, the optimal structure of the model is determined by discussing and alalyzing the number of decisiontree in the random forest fault diagnosis model.

关 键 词:地铁车门系统 随机森林 C4.5决策树 故障诊断 

分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象