检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]安徽大学计算机科学与技术学院,合肥230601
出 处:《计算机应用》2018年第2期399-404,共6页journal of Computer Applications
基 金:国家自然科学基金资助项目(61402005)~~
摘 要:为解决差分进化(DE)算法过早收敛与搜索能力低的问题,讨论对控制参数的动态调整,提出一种基于反向学习的自适应差分进化算法。该算法通过反向精英学习机制来增强种群的局部搜索能力,获取精确度更高的最优个体;同时,采用高斯分布随机性提高单个个体的开发能力,通过扩充种群的多样性,避免算法过早收敛,整体上平衡全局搜索与局部寻优的能力。采用CEC 2014中的6个测试函数进行仿真实验,并与其他差分进化算法进行对比,实验结果表明所提算法在收敛速度、收敛精度及可靠性上表现更优。Concerning premature convergence and low searching capability of Differential Evolutionary( DE) algorithm,the dynamic adjustment of control parameters was dicussed, and a self-adaptive differential evolution algorithm based on opposition-based learning was proposed. In the proposed algorithm, opposition-based elite learning was used to enhance the local search ability of the population and obtain more accurate optimal individuals; meanwhile, Gaussian distribution was used to improve the exploitation ability of each individual and increase the diversity of the population, which avoids premature convergence of the algorithm and achieves the balance of the global exploitation and local exploitation. Comparison experiments with some other differential evolution algorithms were conducted on six test functions in CEC 2014. The experimental results show that the proposed algorithm outperforms the compared differential evolution algorithms in terms of convergence speed,solution accuracy and reliability.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15