siPLS-LASSO的近红外特征波长选择及其应用  被引量:6

Wavelength Selection by siPLS-LASSO for NIR Spectroscopy and Its Application

在线阅读下载全文

作  者:梅从立 陈瑶[2] 尹梁 江辉[2] 陈旭[2] 丁煜函[2] 刘国海[2] 

机构地区:[1]浙江水利水电学院电气工程学院,浙江杭州310018 [2]江苏大学电气信息工程学院,江苏镇江212013

出  处:《光谱学与光谱分析》2018年第2期436-440,共5页Spectroscopy and Spectral Analysis

基  金:国家中小型企业创新基金项目(12C26213202207);国家自然科学基金项目(31271875);江苏省自然科学基金项目(BK20130531;BK20140538);江苏高校优势学科建设工程项目(PAPD)(2011[6]);江苏省普通高校研究生科研创新计划项目(SJLX16_0441)资助

摘  要:近红外技术广泛应用于食品、药品等生产过程和产品质量检测,具有样品无需预处理、成本低、无破坏性、测定速度快等优点。但是,全光谱数据维数高、冗余信息多,直接应用于建模会导致模型复杂性高、稳定性差等问题。siPLS是最常见的光谱数据降维方法,但是难以处理光谱数据的共线性问题。LASSO是一种相对新的数据降维方法,但在小样本应用中具有不稳定性。针对siPLS和LASSO在近红外光谱数据应用中存在的问题,提出了基于siPLS-LASSO的近红外特征波长选择方法,并将其应用于秸秆饲料蛋白固态发酵过程pH值监测。该方法首先采用siPLS算法,实现对光谱波长最佳联合子区间的优选;然后,对优选联合子区间使用LASSO算法进行特征波长选择,在此基础上建立PLS校正模型。同时,将siPLS-LASSO方法与其他传统特征波长选择方法进行了对比。结果表明:建立在siPLS-LASSO方法优选33个特征波长基础上的PLS模型预测结果更好,其预测方差(RMSEP)和相关系数(Rp)分别为0.071 1和0.980 8;所提siPLSLASSO方法有效选取了特征波长,提高了模型预测性能。Near-infrared spectroscopy(NIR)is widely used in entire production processes and product quality test,especially in food and drug industries.It has many advantages,e.g.no requirement of sample pretreatment,low cost,non-destructive detection,and fast determination.However,the application of the whole spectrum data in modeling can lead to complexity and poor stability.The synergy interval PLS(siPLS)is the most common dimensionality reduction method for spectral data.However,it cannot deal with the collinearity problem of spectral data.Least absolute shrinkage and selection operator(LASSO)is a relatively new method for data dimensionality reduction.However,when it comes to small samples,its instability cannot be ignored.For disadvantages of siPLS and LASSO in NIR calibration,a novel wavelength selection method named siPLS-LASSO was proposed.It was validated in a wheat-straw solid-state fermentation process by monitoring pH values.In the method,siPLS was firstly used to selected intervals of NIR spectroscopy.Secondly,LASSO was used to select wavelengths on the selected intervals.Finally,the selected wavelengths were used to construct PLS model for prediction.For comparisons,several conventional wavelength selection methods were also studied.In the case study,33 wavelengths were eventually selected by the siPLS-LASSO method and used for PLS modelling.The RMSEP and Rp of the model were 0.071 1 and 0.980 8 respectively.Results showed that the proposed siPLS-LASSO was an effective method of wavelength selection and can improve prediction performance of models.

关 键 词:近红外光谱 波长优选 LASSO siPLS 固态发酵过程 

分 类 号:Q657.33[生物学—生物物理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象