Comparison of rhizosphere and endophytic microbial communities of Chinese leek through high-throughput 16S rRNA gene Illumina sequencing  被引量:4

Comparison of rhizosphere and endophytic microbial communities of Chinese leek through high-throughput 16S rRNA gene Illumina sequencing

在线阅读下载全文

作  者:HUANG Yong-hong 

机构地区:[1]College of Horticulture, Qingdao Agricultural University

出  处:《Journal of Integrative Agriculture》2018年第2期359-367,共9页农业科学学报(英文版)

基  金:supported by the National Natural Science Foundation of China (31471864 and 31272151);the Qingdao Agricultural University High-level Personnel Startup Fund, China (6631115024)

摘  要:Chinese leek(Allium tuberosum Rottler ex Sprengel) is a common vegetable in China. In our previous study, Chinese leek in rotation was found to have significant antifungal and nematicidal activity. This study's aim was to investigate the potential antifungal and nematicidal activity associated with rhizosphere or endophytic microbes of Chinese leek. Thus, a total of 79 261 high-quality sequences were obtained from Chinese leek rhizosphere soil, leaf and root samples. In the rhizosphere soil, the bacterial community comprised five dominant phyla: Proteobacteria(37.85%), Acidobacteria(10.99%), Bacteroidetes(8.24%), Cyanobacteria(7.79%) and Planctomycetes(7.1%). The leaf and root bacterial communities comprised two dominant phyla: Cyanobacteria(83.42% in leaf and 75.44% in root) and Proteobacteria(14.75% in leaf and 21.04% in root). Microbial diversity, richness and evenness in the rhizosphere soil bacterial community were higher than that in the endophytic bacterial communities. The rhizosphere bacterial community was significantly different from the endophytic bacterial communities. The endophytic bacterial communities from the leaf and the root were slightly, but not significantly different from each other. This study's findings would contribute to the isolation and identification of nematicidal and antifungal bacterial communities in Chinese leek.Chinese leek(Allium tuberosum Rottler ex Sprengel) is a common vegetable in China. In our previous study, Chinese leek in rotation was found to have significant antifungal and nematicidal activity. This study's aim was to investigate the potential antifungal and nematicidal activity associated with rhizosphere or endophytic microbes of Chinese leek. Thus, a total of 79 261 high-quality sequences were obtained from Chinese leek rhizosphere soil, leaf and root samples. In the rhizosphere soil, the bacterial community comprised five dominant phyla: Proteobacteria(37.85%), Acidobacteria(10.99%), Bacteroidetes(8.24%), Cyanobacteria(7.79%) and Planctomycetes(7.1%). The leaf and root bacterial communities comprised two dominant phyla: Cyanobacteria(83.42% in leaf and 75.44% in root) and Proteobacteria(14.75% in leaf and 21.04% in root). Microbial diversity, richness and evenness in the rhizosphere soil bacterial community were higher than that in the endophytic bacterial communities. The rhizosphere bacterial community was significantly different from the endophytic bacterial communities. The endophytic bacterial communities from the leaf and the root were slightly, but not significantly different from each other. This study's findings would contribute to the isolation and identification of nematicidal and antifungal bacterial communities in Chinese leek.

关 键 词:Allium tuberosum Rottler ex Sprengel rhizosphere soil endophyte bacterial community Illumina sequencing 

分 类 号:S154.3[农业科学—土壤学] S633[农业科学—农业基础科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象