改进的SURF算法在书法笔画匹配识别中的应用  

An improved SURF algorithm for calligraphy strokes recognition

在线阅读下载全文

作  者:王民[1] 庞爽爽 周军妮[1] 

机构地区:[1]西安建筑科技大学信息与控制工程学院,陕西西安710055

出  处:《计算机工程与科学》2018年第2期292-297,共6页Computer Engineering & Science

基  金:陕西省教育厅专项基金(2013JK1081);陕西省教育厅科研计划(12JK1007);陕西省科学技术研究发展计划(CXY1122(2));陕西省自然科学基金(2013JQ8003)

摘  要:书法笔画具有丰富的书写人特征,能否正确进行特征向量提取和匹配直接影响识别效果。针对SURF算法检测特征点少、误匹配率高的问题,提出了一种基于Contourlet变换的SURF算法。该算法利用Contourlet变换,在提取特征点前对书法字笔画进行子带分解(LP)和方向性滤波(DFB),得到低频和高频细节分量,采用最小欧氏距离准则(LEDC)对低频细节分量进行相似性计算,高频细节分量进一步分解后选取合适阈值提取高频特征点,然后进行SURF特征点匹配,采用RANSAC算法剔除误匹配点。实验表明,改进的SURF算法不仅能更好地提取笔画特征点,提高抗噪性能,识别率也提高了3%。Calligraphy strokes have rich writer charateristics.Whether feature vectors can be correctly extracted and matched directly affect the recognition effect.Aiming at the problem that the traditional SURF(Scale Invariant Feature Transform)algorithm has fewer detected feature points and higher false matching rate,a SURF based on Contourlet transform is proposed.The algorithm uses Contourlet transform to do sub-band decomposition and directional filtering of calligraphic strokes before the feature points are extracted,and then obtains the low frequency and high frequency detail components.The minimum Euclidean distance criterion(LEDC)is adopted to calculate the similarity of the low-frequency detail components.After the high frequency detail components are further decomposed,the appropriate thresholds are selected to extract the high frequency feature points.Then,the SURF feature points are matched.The RANSAC algorithm is used to eliminate the false matching points.Experiments show that the improved SURF algorithm can not only extract the feature points of the strokes better,but also improve the anti-noise performance.The recognition rate is improved by 3%.

关 键 词:SURF算法 子带分解 方向性滤波 特征点匹配 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象