井震协同建模技术在提高建模精度中的应用——以大港油田埕海一区为例  被引量:1

Application of Logging-seismic Collaborative Modeling in Improving Reservoir Modeling Precision——By Taking Block Chenghai 1 in Dagang Oilfield for Example

在线阅读下载全文

作  者:周连敏[1] 王晶晶[1] 

机构地区:[1]中石油大港油田分公司勘探开发研究院,天津300280

出  处:《长江大学学报(自然科学版)》2018年第3期29-35,共7页Journal of Yangtze University(Natural Science Edition)

基  金:国家科技重大专项(2008ZX05015-005)

摘  要:在开发初期,井网密度低,钻井资料相对较少,无法进行足够细致的沉积相研究,也无法建立准确的沉积相模型。利用对岩性分布预测能力较强的地震反演数据,结合反映岩性能力较强且纵向分辨率高的泥质体积分数曲线,采用协同克里格算法模拟建立大港油田埕海一区的泥质体积分数模型。然后结合研究区的测井分析成果,对泥质体积分数模型进行岩性判别。预测出的岩相模型能够清晰识别薄层砂岩和泥岩夹层,且与地质认识更相符。该方法融合了地震反演资料横向覆盖广的优势,克服了井资料缺乏造成的在现实复杂空间内砂岩展布效果较差的难题,提高了储层的预测精度。通过后期的井位跟踪显示,所建模型与生产动态分析符合较好,为研究区井位的设计提供了重要地质依据。At the initial stage of exploitation,the well spacing density was low and drilling data were relatively insufficient,so it was difficult for sufficient and accurate sedimentary facies study,and also difficult for establishing an accurate sedimentary facies model.The well logging of the shale volume fraction with high vertical resolution was used,the shale volume fraction content model was established based on the seismic inversion data with high recognition,the method of co-kriging was used in Block Chenghai 1 of Dagaing Oilfield,and then a lithofacies model was established by using the result of analyzing the well logging of shale volume fraction in the study area,which could be interpreted to distinguish lithofacies.This approach of lithofacies modeling overcame the drawbacks of deficiency of well data that could not realize reservoir parameter architecture in the complex space,the accuracy of reservoir prediction was improved.The tracking of well location indicates that the proposed model is in good agreement with the dynamic analysis of production,the geological model provides important geological evidences for well location design in the study area.

关 键 词:地震反演 协同克里格 岩相模型 模型精度 开发初期 

分 类 号:P631.44[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象