Relationship between microstructure and hydrogen induced cracking behavior in a low alloy pipeline steel  被引量:9

Relationship between microstructure and hydrogen induced cracking behavior in a low alloy pipeline steel

在线阅读下载全文

作  者:Jing Li Xiuhua Gao Linxiu Du Zhenguang Liu 

机构地区:[1]State Key Laboratory of Rolling and Automation,Northeastern University,5henyang 110819,China

出  处:《Journal of Materials Science & Technology》2017年第12期1504-1512,共9页材料科学技术(英文版)

基  金:supported by the National High Technology Research and Development Program of China(Grant No.2015AA03A501);the National Natural Science Foundation of China(Grant No.51274063)

摘  要:Hydrogen induced cracking(HIC) behaviors of a high strength pipeline steel with three different microstructures, granular bainite & lath bainite(GB + LB), granular bainite & acicular ferrite(GB + AF), and quasi-polygonal ferrite(QF), were studied by using corrosion experiment based on standard NACE TM0284. The HIC experiment was conducted in hydrogen sulfide(H_2S)-saturated solution. The experimental results show that the steel with GB + AF and QF microstructure present excellent corrosion resistance to HIC, whereas the phases of bainite lath and martensite/austenite in LB + GB microstructure are responsible for poor corrosion resistance. Compared with ferrite phase, the bainite microstructure exhibits higher strength and crack susceptibility of HIC. The AF + GB microstructure is believed to have the best combination of mechanical properties and resistance to HIC among the designed steels.Hydrogen induced cracking(HIC) behaviors of a high strength pipeline steel with three different microstructures, granular bainite & lath bainite(GB + LB), granular bainite & acicular ferrite(GB + AF), and quasi-polygonal ferrite(QF), were studied by using corrosion experiment based on standard NACE TM0284. The HIC experiment was conducted in hydrogen sulfide(H_2S)-saturated solution. The experimental results show that the steel with GB + AF and QF microstructure present excellent corrosion resistance to HIC, whereas the phases of bainite lath and martensite/austenite in LB + GB microstructure are responsible for poor corrosion resistance. Compared with ferrite phase, the bainite microstructure exhibits higher strength and crack susceptibility of HIC. The AF + GB microstructure is believed to have the best combination of mechanical properties and resistance to HIC among the designed steels.

关 键 词:Pipeline steel Microstructure Hydrogen induced cracking (HIC) Corrosion resistance 

分 类 号:TG142.1[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象