非对称配筋钢筋混凝土偏心受压矩形构件大小偏心破坏的理论判别方法  被引量:3

The Theoretical Judgment Method of Eccentric Compression on Non-symmetric Reinforcement in Reinforced Concrete's Rectangular Components

在线阅读下载全文

作  者:刘万里 黄太华 

机构地区:[1]株洲市规划设计院,湖南株洲412007 [2]中南林业科技大学土木工程学院,长沙410004

出  处:《湖南城市学院学报(自然科学版)》2017年第6期21-25,共5页Journal of Hunan City University:Natural Science

摘  要:在进行钢筋混凝土偏心受压构件设计时,须首先进行大小偏心受压的判别.若为对称配筋,可将计算的相对受压区高度与界限相对受压区高度进行比较加以判断;若为非对称配筋,由于事先不能准确计算出相对受压区高度,有相当多的教材和专业书籍将偏心矩的大小作为大小偏心受压的判别依据,但在实际判断时常发生误判.本文提出了A_s和A_s~'均为未知、A_s已知而A_s~'为未知、A_s~'已知而A_s为未知这3种情况下的非对称配筋时的大小偏心受压的理论判断方法,通过算例证明该理论判断方法的判断结果是准确无误的.While designing eccentrically compressed components it is necessary to judge variable eccentric compression conditions firstly. If the symmetric reinforcement we can judge by comparing the calculated relative height of compression zone with the boundary height of compression zone, if non-symmetric reinforcement, we cannot calculate the accurate relative height of compression zone in advance, quite lots of the textbooks and special books regard eccentric distance as the basis to judge variable eccentric compression conditions, but the practical judgment always occurs misjudgment. In this article the authors put forward variable eccentric compression's theoretical judgment method of non-symmetric reinforcement in three cases of As and As′ unknown, As′ known and As′ unknown, As′ known and As′. unknown. Through example it can prove that the result is accurate with this theoretical judgment method.

关 键 词:理论判别方法 非对称配筋 大小偏心受压 

分 类 号:TU312[建筑科学—结构工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象