检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王建仑[1] 韩彧 赵霜霜 郑鸿旭 何灿 崔晓莹 徐云[1] 陈建树 王淑婷
机构地区:[1]中国农业大学信息与电气工程学院,北京100083
出 处:《中国农业文摘(农业工程)》2018年第1期8-16,共9页Agricultural Science and Engineering in China
摘 要:本研究提出了一种基于四级daubechies 5('db5')小波分解提取自然光温室中草莓叶片图像边缘的新算法。该算法对不同尺度的重建图像采用不同的分割和运算方法,以去除叶片目标边缘的外部背景和内部纹理干扰。这种方法有两个优势:一是从不同的尺度空间来获取相应映射区域的重建图像,可以为相应的各层空间区域提供不同的图像抽象特征。另一方面,在某个尺度空间中特定映射区域的某些图像特征难以获得,而其它尺度空间中特定映射区域的这种特征则容易得到。在本文中对不同尺度重建的图像处理时,主要采用Otsu阈值分割获得不同尺度重建图像得到相应空间位置的二值图像区域,并用canny分割不同尺度相应映射区域的重建图像获取相应空间位置的准确梯度的边缘,并通过不同尺度空间相应映射区域的两种分割的综合,得到精确完整的叶片边缘。但是由于草莓叶片图像各自不尽相同,自然光温室的光辐射和反射环境下叶片图像的局部非均匀照度,导致canny边缘提取会产生大量非叶片边缘的伪边缘,所以必须对在不同尺度之间相应的空间映射区域内的重建图像,进行分割处理和边缘提取处理,对其结果进行跨尺度的形态学和逻辑运算,用以避免叶片图像的canny伪边缘造成叶片的内部分割不完整碎片和叶片内部区域与叶片外部区域的粘连。为此,本研究将尺度重建叶片图像的canny伪边缘分为三类。第一类canny伪边缘是第一层小波分解重建的叶片图像边缘外部区域的canny伪边缘。第二类和第三类canny伪边缘在第三层小波分解重建图像的第一次Otsu分割的前景区域中。这两类映射区域中canny伪边缘都是映射第一层小波分解重建图像的相应空间区域的canny边缘,只是利用了第三层小波分解重建叶片图像的第一次Otsu分割的前景区域,通过分类划分该区域对canny伪边缘进�
关 键 词:多尺度分析 边缘提取 草莓叶片图像 canny边缘 OTSU分割
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3