Two timescales for longitudinal dispersion in a laminar open-channel flow  

Two timescales for longitudinal dispersion in a laminar open-channel flow

在线阅读下载全文

作  者:王宇飞 槐文信 杨中华 季斌 

机构地区:[1]State Key Laboratory of Water Resources and Hydropower Engineering Science,Wuhan University,Wuhan430072,China

出  处:《Journal of Hydrodynamics》2017年第6期1081-1084,共4页水动力学研究与进展B辑(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Grant Nos.51439007,11372232)

摘  要:At small dimensionless timescales T(= tD/H^2), where t is the time, H is the depth of the channel and D is the molecular diffusion coefficient, the mean transverse concentration along the longitudinal direction is not in a Gaussian distribution and the transverse concentration distribution is nonuniform. However, previous studies found different dimensionless timescales in the early stage, which is not verified experimentally due to the demanding experimental requirements. In this letter, a stochastic method is employed to simulate the early stage of the longitudinal transport when the Peclet number is large. It is shown that the timescale for the transverse distribution to approach uniformity is T= 0.5, which is also the timescale for the dimensionless temporal longitudinal dispersion coefficient to reach its asymptotic value, the timescale for the longitudinal distribution to approach a Gaussian distribution is T= 1.0, which is also the timescale for the dimensionless history mean longitudinal dispersion coefficient to reach its asymptotic value.At small dimensionless timescales T(= tD/H^2), where t is the time, H is the depth of the channel and D is the molecular diffusion coefficient, the mean transverse concentration along the longitudinal direction is not in a Gaussian distribution and the transverse concentration distribution is nonuniform. However, previous studies found different dimensionless timescales in the early stage, which is not verified experimentally due to the demanding experimental requirements. In this letter, a stochastic method is employed to simulate the early stage of the longitudinal transport when the Peclet number is large. It is shown that the timescale for the transverse distribution to approach uniformity is T= 0.5, which is also the timescale for the dimensionless temporal longitudinal dispersion coefficient to reach its asymptotic value, the timescale for the longitudinal distribution to approach a Gaussian distribution is T= 1.0, which is also the timescale for the dimensionless history mean longitudinal dispersion coefficient to reach its asymptotic value.

关 键 词:Early stage longitudinal dispersion random walk particle method scalar transport 

分 类 号:O35[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象