检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Journal of Hydrodynamics》2017年第6期1081-1084,共4页水动力学研究与进展B辑(英文版)
基 金:Project supported by the National Natural Science Foundation of China(Grant Nos.51439007,11372232)
摘 要:At small dimensionless timescales T(= tD/H^2), where t is the time, H is the depth of the channel and D is the molecular diffusion coefficient, the mean transverse concentration along the longitudinal direction is not in a Gaussian distribution and the transverse concentration distribution is nonuniform. However, previous studies found different dimensionless timescales in the early stage, which is not verified experimentally due to the demanding experimental requirements. In this letter, a stochastic method is employed to simulate the early stage of the longitudinal transport when the Peclet number is large. It is shown that the timescale for the transverse distribution to approach uniformity is T= 0.5, which is also the timescale for the dimensionless temporal longitudinal dispersion coefficient to reach its asymptotic value, the timescale for the longitudinal distribution to approach a Gaussian distribution is T= 1.0, which is also the timescale for the dimensionless history mean longitudinal dispersion coefficient to reach its asymptotic value.At small dimensionless timescales T(= tD/H^2), where t is the time, H is the depth of the channel and D is the molecular diffusion coefficient, the mean transverse concentration along the longitudinal direction is not in a Gaussian distribution and the transverse concentration distribution is nonuniform. However, previous studies found different dimensionless timescales in the early stage, which is not verified experimentally due to the demanding experimental requirements. In this letter, a stochastic method is employed to simulate the early stage of the longitudinal transport when the Peclet number is large. It is shown that the timescale for the transverse distribution to approach uniformity is T= 0.5, which is also the timescale for the dimensionless temporal longitudinal dispersion coefficient to reach its asymptotic value, the timescale for the longitudinal distribution to approach a Gaussian distribution is T= 1.0, which is also the timescale for the dimensionless history mean longitudinal dispersion coefficient to reach its asymptotic value.
关 键 词:Early stage longitudinal dispersion random walk particle method scalar transport
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117