纹理属性在火山岩储层预测中的应用  被引量:7

Volcanic reservoir prediction with texture attribute

在线阅读下载全文

作  者:赵淑琴[1] 顾国忠[1] 韩宏伟[1] 张斌[1] 陈星州 于亮亮[1] 

机构地区:[1]中国石油辽河油田分公司勘探开发研究院,辽宁盘锦124010

出  处:《石油地球物理勘探》2017年第A01期152-155,168,共5页Oil Geophysical Prospecting

摘  要:辽河坳陷东部凹陷红星地区发育两组深大断裂,并伴有多期火山喷发,火山岩十分发育且产状多样,给构造解释及地质建模带来很大困难。利用构造解释建模后再反演的方法进行火山岩预测,效果不理想。为此,利用GeoEast系统的属性提取与分析功能对该区火山岩储层进行预测,利用提取的纹理体属性较好地刻画了火山岩体边界,了解了火山岩的空间展布特征,即:南部火山岩发育,呈块状或厚层状;中、北部火山岩较发育,呈层状;在平面上火山岩呈条带状展布,与两条深大断裂位置一致,推断火山喷发模式为裂隙式。在此基础上,通过沿层提取面属性,在沙三段预测出三套火山岩储层的岩相带。纹理属性提取结果与钻井资料吻合较好,研究成果为该区火山岩勘探提供了可靠证据。Two deep fault zones developed in the Hongxing, Eastern Sag of Liaohe Depression. With multiple eruptions, very well-developed volcanic rocks cause many difficulties in structural interpretation and geological modeling. After structural interpretation and modeling, volcanic reservoir prediction with inversion cannot satisfy the exploration needs. Therefore, we conduct volcanic reservoir prediction with attribute extraction and analysis provided by GeoEast. The boundaries and the spatial distribution of volcanic rocks have been well characterized by the texture attribute. According to our prediction, volcanic rocks in the southern area were well-developed in the shape of blocks or thick layers, and volcanic rocks in the central and northern area were well-developed in the shape of layers. Volcanic rocks show banding distribution at plane, and are in line with the two deep fault zones.It is inferred that the volcanic eruption model was a fissure eruption. Based on this, volcanic reservoirs in E_2 s_3, formation have been predicted after attribute extractions along the horizons. Our prediction with the texture attribute has closely matched with the latter drilling data, which provides reliable references for the future volcanic reservoir exploration in the area.

关 键 词:纹理属性 辽河坳陷 火山岩油藏 储层预测 

分 类 号:P631[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象