检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨其 陈水忠[3] 沈淑梅[3] 朱振华[3] YANG Qi;CHEN Shui-zhong;SHEN Shu-mei;ZHU Zhen-hua(Rocket Force University of Engineering, Sergeant College, Qingzhou 262500, China;Primary Command College, Xi'an 710025, China;Luoyang Institute of Electro-Optical Equipment, AVIC, Luoyang 471000, China)
机构地区:[1]火箭军工程大学士官学院,山东青州262500 [2]火箭军工程大学初级指挥学院,西安710025 [3]中国航空工业集团公司洛阳电光设备研究所,河南洛阳471000
出 处:《电光与控制》2018年第3期68-72,91,共6页Electronics Optics & Control
摘 要:结合惯性器件随机误差研究的实际,针对传统的基于时间序列的ARMA建模方法和深度学习LSTM网络进行了适用性和实时性对比分析,通过获取具体型号的惯性器件输出数据设计了算例。研究认为在未做实时性要求的情况下,ARMA建模和LSTM网络均可以达到较好的拟合效果,而建立LSTM网络方法可以减少提取趋势项和周期项的环节;实时在线预测情况下LSTM网络优势明显,但预测精度会随时间序列缩短而明显下降,可以在一定程度上反映噪声变化的趋势并据此对整体控制系统的滤波算法进行优化。For the random error of inertial devices, a contrastive analysis was made to the applicability and real-time performance of the traditional ARMA modeling method and the popular deep learning LSTM network. A simulation example was designed by aobtaining the output data of a specific inertial device. The study showed that: 1 ) Without the real-time performance requirement, both ARMA modeling and LSTM network can achieve accurate prediction results, and the LSTM network is advantageous since it doesn't need to extract the signal trend and cycle terms;and 2) In real-time prediction, the LSTM network has obvious advantages, but the prediction accuracy decreases with the shortening of time series, whereas the output can still reflect the trend of noise change and can be used for optimizing the filtering algorithm of the whole control system.
分 类 号:V448[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15