电动汽车再生电能制动控制策略研究  被引量:6

Electric Vehicle Regenerative Electricity Braking Control Strategy Research

在线阅读下载全文

作  者:何耀 杨旭光 刘新天 郑昕昕 

机构地区:[1]合肥工业大学新能源汽车工程研究院,安徽合肥230009

出  处:《计算机仿真》2018年第2期95-100,共6页Computer Simulation

摘  要:在基于永磁同步电机的电动汽车制动过程中,理论上能够通过电池转矩的反向实现能量回收,然而目前再生制动的能量回收效果并不显著。原因一方面在于电机减速时,会将机械能所转化的电能消耗在系统的无功功率上,无法转变成为有功功率给动力电池组充电。另一方面,车辆制动过程十分短暂,通过电机的稳态效果分析制动的能量回馈效果并不合适。如果针对电动汽车永磁同步电机的瞬态制动过程搭建平台,优化其矢量控制策略下速度环和转矩环误差调节器的参数变化过程,就能够讨论导致无功损耗的原因及解决办法,并提出相应的控制策略。利用Matlab/simulink仿真平台建立基于永磁同步电机的电动汽车再生制动系统,仿真结果表明所提出的控制策略能够有效提高能量回馈的效率。During the process of electric vehicle braking based on permanent magnet synchronous motor, energy recovery can be implemented through battery torque in theory. However, the regenerative braking energy recovery effect is not significant at present. One of the reasons is that the electric energy transformed by mechanical energy would consume on the system reactive power, so it cannot be transformed into active power to the power battery pack charging when the motor is decelerating. In addition, the vehicle braking process is very short, and the analysis of energy feedback effect of braking through the steady effect of motor is not appropriate. In the paper, we analyze the transient barking process of the electric car permanent magnet synchronous motor to optimize the parameters change process of speed loop and torque loop error regulator in vector control strategy, so that the cause of reactive power loss and the solution of it can be discussed. First, we put forward the corresponding control strategy. Matlab/simulink simulation platform was used for the electric vehicle regenerative braking system based on permanent magnet synchro- nous motor. The simulation results show that the proposed control strategy can effectively improve the efficiency of en- ergy feedback.

关 键 词:永磁同步电机 再生制动 能量回馈 矢量控制 

分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象