基于扩展单粒子模型的锂离子电池参数识别策略  被引量:4

An extended single particle model-based parameter identification scheme for lithium-ion cells

在线阅读下载全文

作  者:庞辉[1] 

机构地区:[1]西安理工大学机械与精密仪器工程学院,西安710048

出  处:《物理学报》2018年第5期253-263,共11页Acta Physica Sinica

基  金:国家自然科学基金(批准号:51675423)资助的课题~~

摘  要:为了精确识别电动汽车锂离子动力电池的关键状态参数,基于多孔电极理论和浓度理论,建立了一种考虑液相动力学行为的锂离子电池扩展单粒子模型.相较于传统单粒子模型,该模型增加了对负电极表面固体电解质界面膜参数的描述,并考虑了温度和液相浓度变化对锂离子电池关键参数的耦合影响.基于所建立的扩展单粒子模型,提出一种简化的参数灵敏度分析方法和有效的锂电池参数识别策略,用以确定特定工况下的高灵敏度待识别参数,进而利用遗传算法实现参数的优化求解.最后,通过对比分析本文模型和传统单粒子模型的仿真输出电压和相同工况下电池的实验输出电压验证了提出模型和参数识别方法的有效性和可行性,为电池管理系统的健康状态估计提供了理论基础.The accurate modeling and parameter identification of lithium-ion battery are of great significance in real-time control and high-performance operation for advanced battery management system(BMS) in electrified vehicles(EVs).However, it is difficult to obtain the information about the interior state inside battery, because it cannot be directly measured by some electric devices. In order to accurately identify the key state parameters of lithium-ion cell applied to electric ground vehicles, an extended single particle model of lithium-ion cell with electrolyte dynamics behaviors is first built up based on the porous electrode theory and concentration theory in this article. Compared with the conventional single particle cell model, the parameter description of the solid electrolyte interface film is incorporated into this model,and the coupled effects of temperature-dependent and electrolyte-dependent electrochemical parameters on the cell discharge are also taken into consideration. Based on this extended single particle cell model, a simplified parameter sensitivity analysis method and a comprehensive parameter identification scheme for lithium-ion cell are proposed herein,in which a sensitivity analysis of the capacity to a subset of electrochemical parameters that are hypothesized to evolve throughout the battery’s life, is conducted to determine the highly sensitive parameters to be identified under some particular operation scenarios, and further to solve the parameter optimization problem using the genetic algorithm.Based on this method, the test data under the working condition of 1 C discharge rate at 23℃ are employed to evaluate the identified parameters of lithium-ion battery cell with a peak value of voltage error less than 3.8%. Afterwards, the effectiveness and feasibility of the proposed parameter identification scheme are validated by the comparative study of the simulated output voltage and the experimental output voltage under the same input current profile. Specifically,the 0.05 C d

关 键 词:锂离子电池 扩展单粒子模型 参数识别 模型验证 

分 类 号:TM912[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象