检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华侨大学统计学院,厦门361021 [2]华侨大学现代应用统计与大数据研究中心,厦门361021
出 处:《数据分析与知识发现》2018年第1期29-40,共12页Data Analysis and Knowledge Discovery
基 金:国家社会科学基金项目"基于LDA模型的‘海上丝绸之路’文本挖掘研究"(项目编号:15CTJ005)的研究成果之一
摘 要:【目的】为提升传统LDA模型的主题识别性能,并给主题最优数目选择提供技术方案,提出基于自适应聚类的K-wrLDA模型。【方法】利用LDA和Word2Vec模型得出包含主题词概率信息及词义相关性的T-WV矩阵,并将传统LDA模型的主题数目选择问题转化为聚类效果评价问题,以内部指标伪F统计量作为目标函数,计算主题聚类数目的最优解,并对新旧两种模型的主题识别效果进行比较。【结果】经自适应聚类得出最优主题数量为33,且新模型的困惑度得分始终低于传统模型,主题识别效果对比显示新模型具有更好的凝聚性。【局限】在实证语料选取上获取单一主题下的科技文献,数据量不大。【结论】新模型具有更理想的主题识别能力,并能够自主计算最优主题数目。该模型作为对传统LDA模型的改进,可以应用于各领域的大规模语料中。[Objective] This paper proposes a K-wrLDA model based on adaptive clustering, aiming to improve the subject recognition ability of traditional LDA model, and identify the optimal number of selected topics. [Methods] First, we used the LDA and word2 vec models to construct the T-WV matrix containing the probability information and the semantic relevance of the subject words. Then, we selected the number of topics based on the evaluation of clustering effects and the pseudo-F statistic. Finally, we compared the topic identification results of the proposed model with the old ones. [Results] The optimal number of topics was 33 for the proposed model, which also has lower level of perplexity than the traditional ones. [Limitations] The sample size needs to be expanded. [Conclusions] The proposed model, which has better recognition rate than the traditional LDA model, could also calculate the optimal number of topics. The new model may be applied to process large corpus in various fields.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117