集装箱班轮联盟间博弈模型与稳定性控制  

Game Model and Stability Control of Container Liner Alliance

在线阅读下载全文

作  者:张永锋[1,2] 赵刚[2] 陈继红[2] 

机构地区:[1]上海海事大学上海国际航运研究中心,上海200082 [2]上海海事大学交通运输学院,上海201306

出  处:《系统工程》2017年第9期128-131,共4页Systems Engineering

基  金:国家自然科学基金资助项目(51409157);上海高校知识服务平台建设项目(ZF1209)

摘  要:构建班轮联盟间的博弈模型,并开展均衡状态及稳定性分析。以古诺博弈为基础,构建不同决策预期条件下的三寡头动态博弈模型,并引入动力学系统优化。根据不动点理论,运用MATLAB求解班轮博弈模型的系统动力学方程,求解系统均衡稳定点。再根据劳斯-赫尔维茨理论判定均衡状态的稳定区间。研究表明:假设预期条件下,三寡头班轮联盟间动态博弈存在唯一纳什均衡状态,且状态与各联盟对于未来不同的市场预期无关。同时纳什均衡状态存在一定范围的稳定区域,即三家班轮联盟企业在稳定区域范围内调整运力不会引起均衡状态变化。当自适用预期和有限理性预期联盟的运力投入速度超出稳定区域,纳什均衡即遭受破坏,稳定系统出现分岔,甚至步入无序竞争状态。This paper sets up the Game model and analyze the equilibrium stability. Three oligarch dynamic game models are set up under different decision expected and pull-in the optimization of the system dynamics, based on the Cournot game. According to the fixed point theory, we solve the system stable point and System dynamics equation using MATLAB. The stable interval of State of equilibrium is judged by the method of the Routh-Hurwitz. The result shows that: three game models of the oligopoly liner alliance have the unique Nash equilibrium state, which is unconcerned to the different expectation of the alliances. Meanwhile, Nash equilibrium state has a stable region. That is, the adjustment of the capacity of the three liner alliance enterprises in the stable region will not cause the change of equilibrium state. The changes of the parameters in static expectation and self-application expectation will destroy the balance and cause system bifurcation phenomenon, even the evolution of chaos.

关 键 词:班轮联盟 古诺模型 均衡状态 稳性控制 

分 类 号:U694[交通运输工程—港口、海岸及近海工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象