检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曹梓豪 赵清贺[1,2] 左宪禹[3] 丁圣彦[1,2] 张祎帆 徐珊珊[1,2] 吴东星
机构地区:[1]河南大学环境与规划学院,河南开封475004 [2]河南大学黄河中下游数字地理技术教育部重点实验室,河南开封475004 [3]河南大学数据与知识工程研究所,河南开封475004
出 处:《应用生态学报》2018年第3期739-747,共9页Chinese Journal of Applied Ecology
基 金:国家自然科学基金项目(41301197;41371195);河南省高等学校重点科研项目(18A170004);河南省高校科技创新团队支持计划项目(16IRTSTHN012)资助~~
摘 要:河岸缓冲带作为河流-陆地之间重要的生态过渡区,恢复以及优化其退化的植被系统对防止水土流失、改善生态环境及实现该区域生态系统的可持续发展具有重要的现实意义.本文基于植被格局情景模拟和汇流路径长度指数,分析不同植被盖度和坡度下坡面水文连通性对植被格局的响应,探讨黄河下游河岸缓冲带水土保持效应的最优植被格局.结果表明:坡中格局-粗粒度-集群分布的植被配置方式所产生的汇流路径长度最小、水文连通性最弱,是抑制坡面产流汇流效果最优的植被格局类型.对于最优植被格局,其汇流路径长度随坡长的增加而增加,坡长越长,坡度的作用越明显,水文连通性在各坡度之间的差异越显著;汇流路径长度随植被盖度增加而减小,低盖度时各坡度之间的汇流路径长度差异明显,当盖度达到45%时,各坡度之间的汇流路径长度趋于一致、水文连通性差异较小.实证坡面汇流路径长度随植被盖度增加其降低趋势无规律性,而最优植被格局汇流路径长度随植被盖度增加均呈现出一致的先急剧后平缓下降趋势.在设置的5°~20°坡度范围内,最优植被格局在一定程度上改变了盖度变化过程中不同坡度之间汇流路径长度的差异,突显了河岸缓冲带植被格局对水文连通性的影响.Riparian buffer zone is important ecological transitional region between river and upland. Restoring the degraded vegetation system is important for preventing soil erosion, improving ecological environment and helping to achieve the sustainable development of ecosystems. Based on the scenario simulation of vegetation pattern and flow length index, we analyzed the responses of hydrologicalconnectivity to vegetation pattern under different vegetation coverages and slope gradients, andexplored the optimal vegetation pattern of soil and water conservation in riparian buffer zone in the lower reaches of the Yellow River. The results showed that the midslope coarsnessclustered distribution of vegetation configuration, which exhibited the shortest flow length and the weakest hydrological connectivity, being the optimal vegetation pattern for controlling slope runoff generation and flow concentration. For the optimal vegetation pattern, its flow length increased with increasing slope length, namely, the longer slope length the more significant difference of hydrological connectivity between different slope gradients. Meanwhile, flow length of the optimal vegetationpattern decreased with increasing vegetation coverage. The differences between different slope gradients were obvious under low vegetation coverage, while it was unobvious on slope withvegetation coverage of 45%. Compared with the irregular variation trend of flow length on the actual vegetation slope, there was a consistent trend of first increase and then decrease on the simulated slope with the optimal vegetation pattern. Within the preset slope gradient range (5°-20°), the optimal vegetation pattern changed the variation of flow length between different slope gradients in the process of coverage change, which highlighted the influence of riparian buffer zone vegetation pattern on hydrological connectivity.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38