机构地区:[1]School of Material and Metallurgy,Inner Mongolia University of Science and Technology
出 处:《Chinese Journal of Structural Chemistry》2018年第1期44-54,共11页结构化学(英文)
基 金:supported by the National Natural Science Foundations of China(51501095,51371094);the Natural Science Foundation of Inner Mongolia(2017MS(LH)0516)
摘 要:Nanosized Ce^1-x)(Nd^0.5)Eu^0.5))xO^2-δ) solid solutions(x = 0.00-0.20) were synthesized by means of hydrothermal method.Then the solid solutions were ball milled with Mg2Ni and Ni powders for 20 h to get the Mg2Ni–Ni–5 mol% Ce^1-x)(Nd^0.5)Eu^0.5))xO^2-δ) composites.The structures and spectrum characteristics of the Ce^1-x)(Nd^0.5)Eu^0.5))xO^2-δ) solid solutions catalysts were analyzed systemically.XRD results showed that the doped samples exhibited single phase of CeO2 fluorite structure.The cell parameters and cell volumes were increased with increasing the doped content.Raman spectrum revealed that the peak position of F^2g mode shift to higher wavenumbers and the peak corresponding to oxygen vacancies were observed distinctly for the doped samples.UV-Vis technique indicated that the absorption peaks of Eu^3+ and Nd^3+ ions appeared; the bandgap energy was decreased linearly.The electrochemical and kinetic properties of the Mg2Ni–Ni–5 mol% Ce1-x(Nd0.5Eu0.5xO2-δ composites were measured.The maximum discharge capacity was increased from 722.3 mA h/g for x = 0.00 to 819.7 mA h/g for x = 0.16,and the cycle stability S20 increased from 25.0%(x = 0.00) to 42.2%(x = 0.20).The kinetic measurement proved that the catalytic activity of composite surfaces and the hydrogen diffusion rate were improved for the composites with doped catalysts,especially for the composites with x = 0.16 and x = 0.20.The catalysis mechanism was analyzed from the point of microstructure and spectrum features of the Ce1-x(Nd0.5Eu0.5)xO2-δ solid solutions.Nanosized Ce^1-x)(Nd^0.5)Eu^0.5))xO^2-δ) solid solutions(x = 0.00-0.20) were synthesized by means of hydrothermal method.Then the solid solutions were ball milled with Mg2Ni and Ni powders for 20 h to get the Mg2Ni–Ni–5 mol% Ce^1-x)(Nd^0.5)Eu^0.5))xO^2-δ) composites.The structures and spectrum characteristics of the Ce^1-x)(Nd^0.5)Eu^0.5))xO^2-δ) solid solutions catalysts were analyzed systemically.XRD results showed that the doped samples exhibited single phase of CeO2 fluorite structure.The cell parameters and cell volumes were increased with increasing the doped content.Raman spectrum revealed that the peak position of F^2g mode shift to higher wavenumbers and the peak corresponding to oxygen vacancies were observed distinctly for the doped samples.UV-Vis technique indicated that the absorption peaks of Eu^3+ and Nd^3+ ions appeared; the bandgap energy was decreased linearly.The electrochemical and kinetic properties of the Mg2Ni–Ni–5 mol% Ce1-x(Nd0.5Eu0.5xO2-δ composites were measured.The maximum discharge capacity was increased from 722.3 mA h/g for x = 0.00 to 819.7 mA h/g for x = 0.16,and the cycle stability S20 increased from 25.0%(x = 0.00) to 42.2%(x = 0.20).The kinetic measurement proved that the catalytic activity of composite surfaces and the hydrogen diffusion rate were improved for the composites with doped catalysts,especially for the composites with x = 0.16 and x = 0.20.The catalysis mechanism was analyzed from the point of microstructure and spectrum features of the Ce1-x(Nd0.5Eu0.5)xO2-δ solid solutions.
关 键 词:hydrothermal method Ce1-x(Nd0.5Eu0.5)xO2-δ solid solutions Mg2Ni ball milling catalysis mechanism
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...