基于稀疏特性的盲二值图像去模糊  被引量:4

Blind Binary Image Deconvolution Based on Sparse Property

在线阅读下载全文

作  者:许影 李强懿 

机构地区:[1]南京航空航天大学计算机科学与技术学院,南京211106

出  处:《计算机科学》2018年第3期253-257,共5页Computer Science

基  金:国家自然科学基金项目(61375021;41301407)资助

摘  要:通过分析二值图像发现其像素值具有稀疏特性,因此采用L0梯度反卷积算法结合二值图像的组合特性来处理盲二值图像的复原问题。常见的图像复原方法均将二值图像看作灰度值图像来处理,当其考虑到二值图像的特殊性质时,将会针对这种特定类型的图像得到更好的复原效果。提出的盲复原算法基于一阶梯度空间L0最小化问题的框架,利用L0梯度图像平滑方法来获得明显的图像边缘以估计模糊核,并将二值图像的特有属性作为正则项加入目标函数。在图像的复原过程中,通过二值图像先验来强制复原结果趋于二值图像。根据提出的模型,给出了基于稀疏特性的盲二值图像复原算法。通过实验将该算法与传统的盲反卷积复原算法进行比较,结果表明所提算法具有良好的性能,对二值图像进行复原是有效的。Analysis of binary image shows that the pixel values of binary image are sparse,hence the L0 gradient deconvolution is combined with the combinatorial property to deal with the blind binary image restoration problem.Common image restoration methods treat binary image as gray-scale image with an optional threshold,when considering the special property of the binary image,they will get better recovery results for this particular type of image.The proposed blind image restoration algorithm is based on the frame of the first-order gradient space L0 minimization program,uses the L0 gradient image smoothing method to obtain distinct image edges to estimate the blurring kernel,and introduces the special binary property of binary image into the objective function as a regularizer.The binary image prior is used in the restoration process to force the latent restored image to be binary.According to the proposed model,the blind binary image deconvolution algorithm based on the sparse property was presented.The experimental results show that compared with conventional blind deconvolution algorithms,the proposed method has more favorable performance,and is more efficient for binary image restoration.

关 键 词:盲图像复原 L0范数 二值图像 正则化 模糊核估计 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象