机构地区:[1]State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China [2]Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
出 处:《Nano Research》2018年第1期254-263,共10页纳米研究(英文版)
摘 要:We perform detailed quantum chemical calculations to elucidate the origin and mechanism of the selective permeability of alkali and alkaline earth cation- decorated graphene oxide (M-GO) membranes to organic solvents. The results show that the selectivity is associated mainly with the transport properties of solvents in the membranes, which depends on two regions of the flow path: the sp3 C-O matrix of the GO sheets and the cation at the center of the hexagon rather than the sp~ region. According to the delocalization of ~ states in sp2 regions, we propose a design guide for high-quality M-GO membranes. The solvent-cation interaction essentially causes directional transport of molecules in the M-GO membranes under the transmembrane pressure, indicating a site-to-site mech- anism. The solvent-sp3 C-O matrix interaction may inhibit molecular transport between two fixed cations by consuming energy. The competition between energy consumption by the solvent-cation interaction and energy expenditure by the solvent-sp3 C-O matrix interaction leads to various transport properties of solvents and thus allows for the selective permeability of the M-GO membranes. Findings from the study are helpful for the future design of multifunctional M-GO macro-membranes as cost-effective solution nanofilters in chemical, biological, and medical applicationsWe perform detailed quantum chemical calculations to elucidate the origin and mechanism of the selective permeability of alkali and alkaline earth cation- decorated graphene oxide (M-GO) membranes to organic solvents. The results show that the selectivity is associated mainly with the transport properties of solvents in the membranes, which depends on two regions of the flow path: the sp3 C-O matrix of the GO sheets and the cation at the center of the hexagon rather than the sp~ region. According to the delocalization of ~ states in sp2 regions, we propose a design guide for high-quality M-GO membranes. The solvent-cation interaction essentially causes directional transport of molecules in the M-GO membranes under the transmembrane pressure, indicating a site-to-site mech- anism. The solvent-sp3 C-O matrix interaction may inhibit molecular transport between two fixed cations by consuming energy. The competition between energy consumption by the solvent-cation interaction and energy expenditure by the solvent-sp3 C-O matrix interaction leads to various transport properties of solvents and thus allows for the selective permeability of the M-GO membranes. Findings from the study are helpful for the future design of multifunctional M-GO macro-membranes as cost-effective solution nanofilters in chemical, biological, and medical applications
关 键 词:alkali and alkaline earthcation-decorated grapheneoxide (M-GO) membrane organic solvent permeability TRANSPORT density functional theory
分 类 号:TQ174.1[化学工程—陶瓷工业] TQ630.44[化学工程—硅酸盐工业]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...