Unique role of non-mercapto groups in thiol-pinning- mediated Ag growth on Au nanoparticles  

Unique role of non-mercapto groups in thiol-pinning- mediated Ag growth on Au nanoparticles

在线阅读下载全文

作  者:Jiaqi Chen  Jiao Yan  Yuandong Chen  Shuai Hou  Yinglu Ji  Xiaochun Wu 

机构地区:[1]CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing China [2]University of Chinese Academy of Sciences Beijing China

出  处:《Nano Research》2018年第2期614-624,共11页纳米研究(英文版)

摘  要:Owing to the strong affinity of thiols to Au and Ag, they are often employed to modify the surfaces of nanoparticles (NPs). Recently, these strong ligand-interface interactions have been employed to control NP growth, and this technique has emerged as a unique modulation strategy for creating unconventional plasmonic hybrid nanostructures. In these systems, the roles of the non-mercapto components of the thiol molecules and their structures are still unknown. Therefore, we herein present our investigation into this phenomenon. Primary amino (-NH2) groups in thiols are found to play a key role in regulating growth kinetics, i.e., in accelerating Ag deposition on Au NPs. The -NH2 groups are thought to bring Ag ions to the particle surface by coordinating to them, and thereby assist their reduction. The effect of molecular structure is non-trivial and thus provides the possibility of selective thiol detection. Based on the dependence of kinetic modulation on the non-mercapto components and molecular structures of molecules, we demonstrate the highly sensitive and specific detection of cysteine (limit of detection: 6 nM) in a mixture of 19 natural amino acids based on Ag growth on Au nanospheres. In addition, based on this modulation effect, we reveal the entrapping of chiral thiols within the growth layer through their plasmonic circular dichroism (PCD) responses. We believe that thiol-based growth regulation has great potential for creating plasmonic nanostructures with novel functionalities.Owing to the strong affinity of thiols to Au and Ag, they are often employed to modify the surfaces of nanoparticles (NPs). Recently, these strong ligand-interface interactions have been employed to control NP growth, and this technique has emerged as a unique modulation strategy for creating unconventional plasmonic hybrid nanostructures. In these systems, the roles of the non-mercapto components of the thiol molecules and their structures are still unknown. Therefore, we herein present our investigation into this phenomenon. Primary amino (-NH2) groups in thiols are found to play a key role in regulating growth kinetics, i.e., in accelerating Ag deposition on Au NPs. The -NH2 groups are thought to bring Ag ions to the particle surface by coordinating to them, and thereby assist their reduction. The effect of molecular structure is non-trivial and thus provides the possibility of selective thiol detection. Based on the dependence of kinetic modulation on the non-mercapto components and molecular structures of molecules, we demonstrate the highly sensitive and specific detection of cysteine (limit of detection: 6 nM) in a mixture of 19 natural amino acids based on Ag growth on Au nanospheres. In addition, based on this modulation effect, we reveal the entrapping of chiral thiols within the growth layer through their plasmonic circular dichroism (PCD) responses. We believe that thiol-based growth regulation has great potential for creating plasmonic nanostructures with novel functionalities.

关 键 词:thiol modification surface mediated accelerated overgrowth cysteine detection 

分 类 号:Q517[生物学—生物化学] O781[理学—晶体学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象