检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Gwilym Williams Matthew Hunt Benedikt Boehm Andrew May Michael Taverne Daniel Ho Sean Giblin Dan Read John Rarity Rolf Allenspach Sam Ladak
机构地区:[1]School of Physics and Astronomy Cardiff University Cardiff UK [2]IBM Research - Zurich Rüschlikon Switzerland [3]Department of Electrical and Electronic Engineering University of Bristol Bristol UK
出 处:《Nano Research》2018年第2期845-854,共10页纳米研究(英文版)
摘 要:Ferromagnetic materials have been utilized as recording media in data storage devices for many decades. The confinement of a material to a two-dimensional plane is a significant bottleneck in achieving ultra-high recording densities, and this has led to the proposition of three-dimensional (3D) racetrack memories that utilize domain wall propagation along the nanowires. However, the fabrication of 3D magnetic nanostructures of complex geometries is highly challenging and is not easily achieved with standard lithography techniques. Here, we demonstrate a new approach to construct 3D magnetic nanostructures of complex geometries using a combination of two-photon lithography and electrochemical deposition. The magnetic properties are found to be intimately related to the 3D geometry of the structure, and magnetic imaging experiments provide evidence of domain wall pinning at the 3D nanostructured junction.Ferromagnetic materials have been utilized as recording media in data storage devices for many decades. The confinement of a material to a two-dimensional plane is a significant bottleneck in achieving ultra-high recording densities, and this has led to the proposition of three-dimensional (3D) racetrack memories that utilize domain wall propagation along the nanowires. However, the fabrication of 3D magnetic nanostructures of complex geometries is highly challenging and is not easily achieved with standard lithography techniques. Here, we demonstrate a new approach to construct 3D magnetic nanostructures of complex geometries using a combination of two-photon lithography and electrochemical deposition. The magnetic properties are found to be intimately related to the 3D geometry of the structure, and magnetic imaging experiments provide evidence of domain wall pinning at the 3D nanostructured junction.
关 键 词:MAGNETISM SPINTRONICS nanomagnefism three-dimensional (3D)lithography
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46