机构地区:[1]State Key Laboratory of Environmental Chemistry and Ecotoxicology,Research Centre for Eco-Environmental Sciences,Chinese Academy ofSciences,Beijing 100085,China [2]University of Chinese Academy of Sciences,Beijing 100049,China
出 处:《Journal of Environmental Sciences》2018年第1期133-139,共7页环境科学学报(英文版)
基 金:supported by the Ministry of Science and Technology of China(Nos.2016YFA0203102,2016YFC0900301 and 2014CB932003);the National Natural Science Foundation of China(Nos.21375142,21321004,and 21435008);the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB14030000)
摘 要:Halobenzoquinones(HBQs) are an emerging class of halogenated disinfection byproducts(DBPs) in drinking water, which raised public concerns due to potential carcinogenic effects to human bladder. Our previous work demonstrated that HBQs and hydrogen peroxide(H_2O_2)together generated oxidative DNA damage via a metal-independent and intercalationenhanced oxidation mechanism in vitro. This study further investigated the efficiency of various HBQs to induce oxidative DNA damage in T24 bladder cancer cells. Compared with T24 cells without treatment(3.1 lesions per 10~6 d G), the level of 8-oxo-7,8-dihydro-2′-deoxyguanosine(8-oxod G) significantly increased by 1.4, 3.2, 8.8, and 9.2 times after treatment with tetrabromo-1,4-benzoquinone(TBBQ), terachloro-1,4-benzoquinone(TCBQ),2,6-dichloro-1,4-benzoquinone(2,6-DCBQ) and 2,5-dichloro-1,4-benzoquinone(2,5-DCBQ) for24 hr, respectively. Interestingly, we found that the oxidative potency of HBQs in T24 cells(2,5-DCBQ ≈ 2,6-DCBQ 〉 TCBQ 〉 TBBQ) is inconsistent with that of in vitro ds DNA oxidation(TCBQ 〉 TBBQ 〉 2,5-DCBQ 〉 2,6-DCBQ), suggesting HBQs induce oxidative lesions in cellular genomic DNA probably involved with a complex mechanism.Halobenzoquinones(HBQs) are an emerging class of halogenated disinfection byproducts(DBPs) in drinking water, which raised public concerns due to potential carcinogenic effects to human bladder. Our previous work demonstrated that HBQs and hydrogen peroxide(H_2O_2)together generated oxidative DNA damage via a metal-independent and intercalationenhanced oxidation mechanism in vitro. This study further investigated the efficiency of various HBQs to induce oxidative DNA damage in T24 bladder cancer cells. Compared with T24 cells without treatment(3.1 lesions per 10~6 d G), the level of 8-oxo-7,8-dihydro-2′-deoxyguanosine(8-oxod G) significantly increased by 1.4, 3.2, 8.8, and 9.2 times after treatment with tetrabromo-1,4-benzoquinone(TBBQ), terachloro-1,4-benzoquinone(TCBQ),2,6-dichloro-1,4-benzoquinone(2,6-DCBQ) and 2,5-dichloro-1,4-benzoquinone(2,5-DCBQ) for24 hr, respectively. Interestingly, we found that the oxidative potency of HBQs in T24 cells(2,5-DCBQ ≈ 2,6-DCBQ 〉 TCBQ 〉 TBBQ) is inconsistent with that of in vitro ds DNA oxidation(TCBQ 〉 TBBQ 〉 2,5-DCBQ 〉 2,6-DCBQ), suggesting HBQs induce oxidative lesions in cellular genomic DNA probably involved with a complex mechanism.
关 键 词:Halobenzoquinones Reactive oxygen species Oxidative DNA damage 8-Oxo-7 8-dihydro-2′-deoxyguanosine(8-oxodG)
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...