Aqueous and mechanical exfoliation, unique properties, and theoretical understanding of MoO3 nanosheets made from free-standing a-MoO3 crystals: Raman mode softening and absorption edge blue shift  

Aqueous and mechanical exfoliation, unique properties, and theoretical understanding of MoO3 nanosheets made from free-standing a-MoO3 crystals: Raman mode softening and absorption edge blue shift

在线阅读下载全文

作  者:Hongfei Liu Yongqing Cai Mingyong Han Shifeng Guo Ming Lin Meng Zhao Yongwei Zhang Dongzhi Chi 

机构地区:[1]Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Eusionopolis Way, Singapore 138634, Singapore [2]Institute of High Performance Computing (IHPC), A *STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way, Singapore 138632, Singapore

出  处:《Nano Research》2018年第3期1193-1203,共11页纳米研究(英文版)

摘  要:Crystalline α-MoO3 belts consisting of nanosheets stacked along their [010] axes were synthesized via thermal vapor transport of MoO3 powders at elevated temperatures. The MoO3 belts were millimeters in length along their [001] axes and tens to hundreds of micrometers in width along their [100] axes. Mechanical and aqueous exfoliations of the belts to form two-dimensional (2D) nanosheets were processed via the scotch-tape and bovine serum albumin (BSA) assisted methods, respectively. Upon scotch-tape exfoliation, the Raman features of MoO3 exhibited monotonic decreases in intensity as the thickness was gradually fell to approach that of a 2D nanosheet. Most Raman features eventually disappeared when a monolayer nanosheet was produced, except for the Mo-O-Mo stretching mode (Ag) at - 818 cm^-1, which was accompanied by mode-softening of up to 5 cm^-1 This mode softening, hitherto not reported for 2D α-MoO3 nanosheets, can be attributed to lattice relaxations that are validated here via theoretical density functional perturbation theory calculations. The BSA-assisted exfoliation products exhibited a blueshift in the α-MoO3 nanosheet absorption edge; they also revealed an absorption peak at 3.98 eV that can be attributed to their intrinsic exciton absorptions. These observations, together with the facile synthesis of high-purity α-MoO3 crystals, illuminate the possibility of further 2D α-MoO3 nanosheet production and lattice dynamic studies.Crystalline α-MoO3 belts consisting of nanosheets stacked along their [010] axes were synthesized via thermal vapor transport of MoO3 powders at elevated temperatures. The MoO3 belts were millimeters in length along their [001] axes and tens to hundreds of micrometers in width along their [100] axes. Mechanical and aqueous exfoliations of the belts to form two-dimensional (2D) nanosheets were processed via the scotch-tape and bovine serum albumin (BSA) assisted methods, respectively. Upon scotch-tape exfoliation, the Raman features of MoO3 exhibited monotonic decreases in intensity as the thickness was gradually fell to approach that of a 2D nanosheet. Most Raman features eventually disappeared when a monolayer nanosheet was produced, except for the Mo-O-Mo stretching mode (Ag) at - 818 cm^-1, which was accompanied by mode-softening of up to 5 cm^-1 This mode softening, hitherto not reported for 2D α-MoO3 nanosheets, can be attributed to lattice relaxations that are validated here via theoretical density functional perturbation theory calculations. The BSA-assisted exfoliation products exhibited a blueshift in the α-MoO3 nanosheet absorption edge; they also revealed an absorption peak at 3.98 eV that can be attributed to their intrinsic exciton absorptions. These observations, together with the facile synthesis of high-purity α-MoO3 crystals, illuminate the possibility of further 2D α-MoO3 nanosheet production and lattice dynamic studies.

关 键 词:α-MoO3 two-dimensionalmaterials exfoliations lattice vibrationaldynamics micro-Raman scattering 

分 类 号:O4-09[理学—物理] TQ426.8[化学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象