Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithiumsulfur battery cathodes  被引量:12

Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithiumsulfur battery cathodes

在线阅读下载全文

作  者:Xiang-Qian Zhang Bin He Wen-Cui Li An-Hui Lu 

机构地区:[1]State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China

出  处:《Nano Research》2018年第3期1238-1246,共9页纳米研究(英文版)

基  金:This work was supported by the National Basic Research Program of China (No. 2013CB934104), the National Natural Science Foundation of China (Nos. 21225312 and 21376047), and Cheung Kong Scholars Program of China (No. T2015036).

摘  要:Designing a better carbon framework is critical for harnessing the high theoretical capacity of Li-S batteries and avoiding their drawbacks, such as the insulating nature of sulfur, active material loss, and the polysulfide shuttle reaction. Here, we report an ingenious design of hollow carbon nanofibers with closed ends and protogenetic mesopores in the shell that can be retracted to micropores after sulfur infusion. Such dynamic adjustable pore sizes ensure a high sulfur loading, and more importantly, eliminate excessive contact of sulfur species with the electrolyte. Together, the high aspect ratio and thin carbon shells of the carbon nanofibers facilitate rapid transport of Li^+ ions and electrons, and the closed-end structure of the carbon nanofibers further blocks polysulfide dissolution from both ends, which is remarkably different from that for carbon nanotubes with open ends. The obtained sulfur-carbon cathodes exhibit excellent performance marked by high sulfur utilization, superior rate capability (1,170, 1,050, and 860 mA.h.g-1 at 1.0, 2.0, and 4.0 C (1 C = 1.675 A·g^-1), respectively), and a stable reversible capacity of 847 mA·h·g^-1 after 300 cycles at a high rate of 2.0 C.Designing a better carbon framework is critical for harnessing the high theoretical capacity of Li-S batteries and avoiding their drawbacks, such as the insulating nature of sulfur, active material loss, and the polysulfide shuttle reaction. Here, we report an ingenious design of hollow carbon nanofibers with closed ends and protogenetic mesopores in the shell that can be retracted to micropores after sulfur infusion. Such dynamic adjustable pore sizes ensure a high sulfur loading, and more importantly, eliminate excessive contact of sulfur species with the electrolyte. Together, the high aspect ratio and thin carbon shells of the carbon nanofibers facilitate rapid transport of Li^+ ions and electrons, and the closed-end structure of the carbon nanofibers further blocks polysulfide dissolution from both ends, which is remarkably different from that for carbon nanotubes with open ends. The obtained sulfur-carbon cathodes exhibit excellent performance marked by high sulfur utilization, superior rate capability (1,170, 1,050, and 860 mA.h.g-1 at 1.0, 2.0, and 4.0 C (1 C = 1.675 A·g^-1), respectively), and a stable reversible capacity of 847 mA·h·g^-1 after 300 cycles at a high rate of 2.0 C.

关 键 词:hollow carbon nanofibers pore-adjusting strateg sulfur cathodes rate capability energy materials 

分 类 号:TM911.4[电气工程—电力电子与电力传动] TS275[轻工技术与工程—农产品加工及贮藏工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象