Colloidal CsPbBr3 perovskite nanocrystal films as electrochemiluminescence emitters in aqueous solutions  被引量:4

Colloidal CsPbBr3 perovskite nanocrystal films as electrochemiluminescence emitters in aqueous solutions

在线阅读下载全文

作  者:Zhixiong Cai Feiming Li Wei Xu Shujun Xia Jingbin Zeng Shaogui He Xi Chen 

机构地区:[1]Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China [2]State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China [3]State Key Laboratory of Heavy Oil Processing & College of Science, China University of Petroleum (East China), Qingdao 266555, China [4]Xiamen Huaxia University, Xiamen 361024, China

出  处:《Nano Research》2018年第3期1447-1455,共9页纳米研究(英文版)

基  金:This research was financially supported by the National Natural Science Foundation of China (No. 21675133), the Marine high-tech industry development projects of Fujian Province (No. 2015-19). We thank Professor John Hodgkiss of the City University of Hong Kong for polishing the English.

摘  要:Perovskite nanocrystals (NCs), which have emerged as a new class of phosphors with superb luminescence properties and bandgaps that can be easily tuned using chemical methods, have generated tremendous interest for a wide variety of applications where colloidal quantum dots have been very successful as carrier sources. In this study, self-assembled films of CsPbBr3 NCs were produced via drop casting of colloidal NCs onto glassy carbon electrodes (GCEs) to form an NC film-modified electrode. The possible fabrication process of the CsPbBr3 NCs films was discussed. We further studied the anodic electrochemiluminescence (ECL) behavior of the perovskite CsPbBr3 NCs film using cyclic voltammetry with tripropylamine (TPA) as a coreactant, and a possible ECL mechanism was proposed. Briefly, TPA was oxidized to produce strongly reducing radical spedes, which can react with electrochemically oxidized CsPbBr3 NCs to generate excited CsPbBr3 NCs* capable of light emission. The relative stability of the ECL emission of the CsPbBr3 NC films under aqueous conditions was also investigated, and it was found that they showed operational stability over the first three hours, indicating suitable reliability for application as sensing materials. The results suggested that semiconducting perovskite NCs have great potential for application in the ECL field.Perovskite nanocrystals (NCs), which have emerged as a new class of phosphors with superb luminescence properties and bandgaps that can be easily tuned using chemical methods, have generated tremendous interest for a wide variety of applications where colloidal quantum dots have been very successful as carrier sources. In this study, self-assembled films of CsPbBr3 NCs were produced via drop casting of colloidal NCs onto glassy carbon electrodes (GCEs) to form an NC film-modified electrode. The possible fabrication process of the CsPbBr3 NCs films was discussed. We further studied the anodic electrochemiluminescence (ECL) behavior of the perovskite CsPbBr3 NCs film using cyclic voltammetry with tripropylamine (TPA) as a coreactant, and a possible ECL mechanism was proposed. Briefly, TPA was oxidized to produce strongly reducing radical spedes, which can react with electrochemically oxidized CsPbBr3 NCs to generate excited CsPbBr3 NCs* capable of light emission. The relative stability of the ECL emission of the CsPbBr3 NC films under aqueous conditions was also investigated, and it was found that they showed operational stability over the first three hours, indicating suitable reliability for application as sensing materials. The results suggested that semiconducting perovskite NCs have great potential for application in the ECL field.

关 键 词:perovskite CsPbBr3 colloidal nanocrystals film aqueous solution 

分 类 号:O648.1[理学—物理化学] O613.71[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象