机构地区:[1]School of Astronomy and Space Science, Nanjing University, Nanjing 210023, China [2]Key Laboratory of modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210023, China
出 处:《Research in Astronomy and Astrophysics》2018年第2期73-82,共10页天文和天体物理学研究(英文版)
基 金:the National Natural Science Foundation of China(Grant Nos.11473011 and 11590781)
摘 要:We present Caltech Submillimeter Observatory CO (2-1) and Spitzer IRAC observations toward IRAS 22506+5944, which is a 104 Lo massive star-forming region. The CO (2-1) maps show an east-west bipolar molecular outflow originating from the 3 mm dust continuum peak. The Spitzer IRAC color-composite image reveals a pair of bow-shaped tips which are prominent in excess 4.5 p.m emission and are located at the leading fronts of the bipolar outflow, providing compelling evidence for the existence of bow-shocks as the driving agents of the molecular outflow. By comparing our CO (2- 1) observations with previously published CO (1-0) data, we find that the CO (2-1)/(1-0) line ratio increases from low (-5 km s- 1) to moderate (- 8-12 km s- 1) velocities, and then decreases at higher velocities. This is qualitatively consistent with the scenario that the molecular outflow is driven by multiple bow-shocks. We also revisit the position-velocity diagram of the CO (1-0) data, and find two spur structures along the outflow axis, which are further evidence for the presence of multiple jet bow- shocks. Finally, power-law fittings to the mass spectrum of the outflow gives power law indexes more consistent with the jet bow-shock model than the wide-angle wind model.We present Caltech Submillimeter Observatory CO (2-1) and Spitzer IRAC observations toward IRAS 22506+5944, which is a 104 Lo massive star-forming region. The CO (2-1) maps show an east-west bipolar molecular outflow originating from the 3 mm dust continuum peak. The Spitzer IRAC color-composite image reveals a pair of bow-shaped tips which are prominent in excess 4.5 p.m emission and are located at the leading fronts of the bipolar outflow, providing compelling evidence for the existence of bow-shocks as the driving agents of the molecular outflow. By comparing our CO (2- 1) observations with previously published CO (1-0) data, we find that the CO (2-1)/(1-0) line ratio increases from low (-5 km s- 1) to moderate (- 8-12 km s- 1) velocities, and then decreases at higher velocities. This is qualitatively consistent with the scenario that the molecular outflow is driven by multiple bow-shocks. We also revisit the position-velocity diagram of the CO (1-0) data, and find two spur structures along the outflow axis, which are further evidence for the presence of multiple jet bow- shocks. Finally, power-law fittings to the mass spectrum of the outflow gives power law indexes more consistent with the jet bow-shock model than the wide-angle wind model.
关 键 词:ISM: jets and outflows - stars: formation - stars: massive -- stars: protostars
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...