检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李昊 靳双龙[2] 杜晖 尚可政[1] 王式功[1,3] 石彦军 杨旭[1]
机构地区:[1]兰州大学大气科学学院甘肃省干旱气候变化与减灾重点实验室,兰州730000 [2]中国电力科学研究院新能源与储能运行控制国家重点实验室,北京100192 [3]成都信息工程大学大气科学学院环境气象与健康研究院,成都610225 [4]兰州大学信息科学与工程学院,兰州730000
出 处:《兰州大学学报(自然科学版)》2018年第1期120-126,共7页Journal of Lanzhou University(Natural Sciences)
基 金:国家电网公司科技项目(1704-00206);国家自然科学基金重大研究计划重点支持项目(91644226);国家自然科学基金项目(41575138);国家基础科技条件平台建设项目(NCMI-SBS17-201707;NCMI-SJS15-201707)
摘 要:利用2013-2015年兰州市空气污染逐日监测资料,分析了兰州市6种主要空气污染物PM_(10)、PM_(2.5)、NO_2、SO_2、CO和O_3的污染特征;以2014年欧洲中期天气预报中心(ECMWF)资料与T639气象要素预报产品,结合兰州市同期污染物质量浓度监测数据,分别建立了基于最小二乘法支持向量机(LS-SVM)的6种主要空气污染物未来2d的日均质量浓度预报模型;将ECMWF和T639中2015年2月1日-10月31日的气象要素与同期污染物质量浓度监测数据分别输入各模型进行试预报检验.结果表明,以ECMWF建立的预报模型对未来2 d的PM_(10)、PM_(2.5)、NO_2、SO_2和CO的日均质量浓度的预报效果优于T639,而T639对预报O_3有一定优势.用ECMWF建立的预报模型对未来24 h的空气质量指数等级和首要污染物的预报成功率为86.14%,48 h的为82.33%;T639对应的未来24 h预报成功率为83.52%,48 h的为74.43%.两种数值预报产品均可应用于基于LS-SVM预报模型的空气质量预报,其中使用ECMWF的预报产品的释用预报效果整体上更好.Daily monitor records of air pollutant concentrations in Lanzhou City during 2013-2015 were used to analyze the pollution features of 6 major air pollutants: PM,0, PM25, NO2, SO2, CO and 03. Then 2 least square support vector machine (LS-SVM) models were built for predicting daily average concentra- tions of the 6 major pollutants for the next 24 h, 2 LS-SVM models for next 24 h to 48 h, each of them being built with either T639 and pollution dataset of 2014 or European centre for medium-range weather forecasts (ECMWF) and pollution dataset of 2014. All models underwent a forecasting trial using test samples as inputs which were derived from pollution records and ECMWF/T639 dataset consisting of processed meteorological variables from 1 Feb 2015 to 31 Oct 20 l 5. The results are as follows: The 24 h and 48 h models built with ECMWF had a better performance of predicting the daily average concentra- tions of PMI0, PM25, NO2, SO2 and CO, while models built with T639 were better at predicting 03. The corrected prediction rate for both the primary pollutant and the grade of air quality index with ECMWF model for next 24 h was 86.14%, and 82.33% for next 24 h to 48h; the corrected prediction rate with T639 model for next 24 h was 83.52%, and 74.43% for next 24 h to 48 h. T639 and ECMWF both could be used in building air forecasting models based on LS-SVM, and ECMWF showed a better overall performance.
关 键 词:空气质量预报 最小二乘法支持向量机 兰州市 ECMWF预报产品 T639预报产品
分 类 号:X823[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43