检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Applied Physics, School of Science, Xi'an Jiaotong University
出 处:《Chinese Physics B》2018年第2期21-28,共8页中国物理B(英文版)
基 金:Project supported by the National Basic Research Program of China(Grant No.2015CB856304);the National Natural Science Foundation of China(Grant Nos.11504287 and 11774279)
摘 要:Bio-macromolecules, such as proteins and nucleic acids, are the basic materials that perform fundamental activities required for life. Their structural heterogeneities and dynamic personalities are vital to understand the underlying functional mechanisms of bio-macromolecules. With the rapid development of advanced technologies such as single-molecule tech- nologies and cryo-electron microscopy (cryo-EM), an increasing number of their structural details and mechanics properties at molecular level have significantly raised awareness of basic life processes. In this review, firstly the basic principles of single-molecule method and cryo-EM are summarized, to shine a light on the development in these fields. Secondly, recent progress driven by the above two methods are underway to explore the dynamic structures and functions of DNA, antibody, and lipoprotein. Finally, an outlook is provided for the further research on both the dynamic structures and functions of bio-macromolecules, through single-molecule method and cryo-EM combining with molecular dynamics simulations.Bio-macromolecules, such as proteins and nucleic acids, are the basic materials that perform fundamental activities required for life. Their structural heterogeneities and dynamic personalities are vital to understand the underlying functional mechanisms of bio-macromolecules. With the rapid development of advanced technologies such as single-molecule tech- nologies and cryo-electron microscopy (cryo-EM), an increasing number of their structural details and mechanics properties at molecular level have significantly raised awareness of basic life processes. In this review, firstly the basic principles of single-molecule method and cryo-EM are summarized, to shine a light on the development in these fields. Secondly, recent progress driven by the above two methods are underway to explore the dynamic structures and functions of DNA, antibody, and lipoprotein. Finally, an outlook is provided for the further research on both the dynamic structures and functions of bio-macromolecules, through single-molecule method and cryo-EM combining with molecular dynamics simulations.
关 键 词:bio-macromolecule single-molecule method cryo-electron microscopy electron tomography
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28