检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]太原理工大学水利科学与工程学院,太原030024
出 处:《节水灌溉》2018年第2期47-50,共4页Water Saving Irrigation
基 金:国家自然科学基金项目"区域尺度上土壤入渗参数多元非线性传输函数研究"(40671081)
摘 要:为实现土壤水分特征曲线Gardner模型参数的预测以及精度的对比,以山西省黄土高原区农耕土壤为试验材料,进行了土壤水分特征曲线的系列试验,构建了土壤水分特征曲线Gardner拟合模型参数a、b和对应的土壤基本理化参数的数据样本;采用BP神经网络与支持向量机两种预报模型对土壤水分特征曲线Gardner模型参数a、b实现了预测,并对预测精度进行了对比。研究结果表明:随着两种模型输入变量的增加,两种预报模型的精度都得到提高;当输入变量为土壤质地、土壤容重、土壤有机质含量、土壤无机盐含量时,两种预报模型对参数a、b的平均相对误差值均在6%以下,预测模型具有可行性;同时,相比于BP神经网络而言,支持向量机预报模型精度相对较高,而且预测结果波动空间较小,离散程度较低。该成果一方面丰富了Gardner模型参数的土壤传输函数创建的途径,更为Gardner模型参数预测模型的选择提供了依据。
关 键 词:Gardner模型参数 BP神经网络 支持向量机 误差分析 预测精度
分 类 号:S152[农业科学—土壤学] TV93[农业科学—农业基础科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.198