检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]桂林电子科技大学信息与通信学院,广西桂林541004
出 处:《计算机工程与应用》2018年第6期216-221,256,共7页Computer Engineering and Applications
基 金:国家自然科学基金(No.61461011);"认知无线电与信息处理"教育部重点实验室2016年主任基金(No.CRKL160107);广西自然科学基金(No.2014GXNSFBA118273)
摘 要:在语音信号的识别、去噪等过程中通常只需对有声段进行处理,并且对语音段和噪声段可能需要采取不同的处理方法。相关函数描述的是随机信号在不同时刻取值的关联程度,由于噪声的随机性,噪声的相关函数和语音的相关函数有很大的不同,利用此不同点可以进行语音的端点检测。基于此提出了自相关函数的语音端点检测方法,并对比了经典的双门限法——基于短时平均能量和短时平均过零率的双门限判决法。实验表明该方法具有较高的准确性,并且在较低信噪比下能取得比短时平均能量和短时平均过零率的判决法更好的效果。The process of speech signal recognition and de-noising is usually used only for speech signal segments, and in some situations, different approaches are need to be adopted to deal with speech segment and noise segment. Correlation function is used to describe the associate degree of the signal value at different times. Due to the randomness of noise,there is a great difference between the correlation function of noise and the correlation function of speech, which can be employed to the endpoint detection of speech. Based on this idea, a method is presented in this paper which uses autocorrelation function. The comparison is also made with the classical method of speech endpoint detection which is the double-threshold decision method based on the short-time average energy and short-time average zero-crossing rate.Experimental results show that the presented methods has higher accuracy, and can achieve better results than the shorttime average energy and short-time average zero-crossing rate in low SNR.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.120