检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安建筑科技大学机电工程学院
出 处:《热加工工艺》2018年第2期76-80,85,共6页Hot Working Technology
基 金:十二五国家科技支撑计划项目(2011BAE31B02)
摘 要:基于孔隙材料连续介质力学和塑性变形理论,应用多孔材料椭球屈服Shima粘塑性本构模型,采用非线性分析软件MSC.MARC实现了Cu Cr25粉末HIP致密化过程有限元模拟。结果表明:压坯角落及端盖附近的相对密度较低,外侧靠近包套部分均匀性较差。热等静压保压压力小于130 MPa时,Cu Cr25压坯致密化速率、最终相对密度会随加压载荷的增加而提升;当保压压力大于130 MPa,Cu Cr25压坯相对密度基本不变。试验结果与模拟结果平均相对密度误差约为1.4%,表明有限元数值模拟准确预测了Cu Cr25粉末的致密化过程。The finite element simulation of Cu Cr25 powder HIP densification process was realized based on pore material continuum mechanics and plastic deformation theory, the application of porous material ellipsoid yield Shima viscoplastic constitutive model and the nonlinear analysis software MSC. MARC. The results show that the relative density of compacts around the corner and cover is lower, and the uniformity of the outer near canning is poor. When the hot isostatic holding pressure is less than 130 MPa, the compact densification rate and final relative density of Cu Cr25 improve with pressure load increasing. When the holding pressure is greater than 130 MPa, the relative density of Cu Cr25 compacts does not substantially change. The average relative density error of experimental results and simulation result is 1.4%, which indicates that the finite element numerical simulation can accurately predict the densification process of Cu Cr25 powder.
关 键 词:热等静压 CU Cr25触头材料 数值模拟 致密化
分 类 号:TF124[冶金工程—粉末冶金] TG146[冶金工程—冶金物理化学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171