检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:ZHANG Yi-feng SHI San-ying
机构地区:[1]School of Mathematics, Hefei University of Technology, Hefei 230009, China
出 处:《Chinese Quarterly Journal of Mathematics》2017年第3期271-276,共6页数学季刊(英文版)
基 金:Supported by National Natural Science Foundation of China(11201107)
摘 要:Let f(x) be an irreducible polynomial of degree m ≥ 2 with integer coefficients,and let r(n) denote the number of solutions x of the congruence f(x) ≡ 0(mod n) satisfying0 ≤ x < n. Define ?(x) =Σ 1≤n≤x r(n)-αx, where α is the residue of the Dedekind zeta function ζ(s, K) at its simple pole s = 1. In this paper it is shown that ∫_1~X?~2(x)dx? ε{X^(3-6/m+3+ε)if m ≥ 3,X^(2+ε) if m = 2,for any non-Abelian polynomial f(x) and any ε > 0. This result constitutes an improvement upon that of Lü for the error terms on average.Let f(x) be an irreducible polynomial of degree m ≥ 2 with integer coefficients, and let r(n) denote the number of solutions x of the congruence f(x) ≡ 0(mod n) satisfying 0≤ x 〈 n. Define △(x) = ∑1≤n≤xτ(n) - α x, where a is the residue of the Dedekind zetafunction ^(s, K) at its simple pole s = 1. In this paper it is shown that ∫x1△2(x)dx≤ε{x3-6/m+3+εX2+ε if m≥3,if m=2,for any non-Abelian polynomial f(x) and any ε 〉 O. This result constitutes an improvement upon that of Lii for the error terms on average.
关 键 词:Dedekind zeta function polynomial congruence mean square
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.87