On the Error Term for the Number of Solutions of Certain Congruences  

On the Error Term for the Number of Solutions of Certain Congruences

在线阅读下载全文

作  者:ZHANG Yi-feng SHI San-ying 

机构地区:[1]School of Mathematics, Hefei University of Technology, Hefei 230009, China

出  处:《Chinese Quarterly Journal of Mathematics》2017年第3期271-276,共6页数学季刊(英文版)

基  金:Supported by National Natural Science Foundation of China(11201107)

摘  要:Let f(x) be an irreducible polynomial of degree m ≥ 2 with integer coefficients,and let r(n) denote the number of solutions x of the congruence f(x) ≡ 0(mod n) satisfying0 ≤ x < n. Define ?(x) =Σ 1≤n≤x r(n)-αx, where α is the residue of the Dedekind zeta function ζ(s, K) at its simple pole s = 1. In this paper it is shown that ∫_1~X?~2(x)dx? ε{X^(3-6/m+3+ε)if m ≥ 3,X^(2+ε) if m = 2,for any non-Abelian polynomial f(x) and any ε > 0. This result constitutes an improvement upon that of Lü for the error terms on average.Let f(x) be an irreducible polynomial of degree m ≥ 2 with integer coefficients, and let r(n) denote the number of solutions x of the congruence f(x) ≡ 0(mod n) satisfying 0≤ x 〈 n. Define △(x) = ∑1≤n≤xτ(n) - α x, where a is the residue of the Dedekind zetafunction ^(s, K) at its simple pole s = 1. In this paper it is shown that ∫x1△2(x)dx≤ε{x3-6/m+3+εX2+ε if m≥3,if m=2,for any non-Abelian polynomial f(x) and any ε 〉 O. This result constitutes an improvement upon that of Lii for the error terms on average.

关 键 词:Dedekind zeta function polynomial congruence mean square 

分 类 号:O156.4[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象