基于AP布置优化和K-means聚类算法的室内定位研究  被引量:1

Indoor location research based on AP layout optimization and K-means clustering algorithm

在线阅读下载全文

作  者:陈云飞[1,2] 杜太行[1,3] 江春冬[1,3] 王景玉 李娟妹[1] 

机构地区:[1]河北工业大学控制科学与工程学院,天津300130 [2]邢台职业技术学院电气工程系,河北邢台054000 [3]河北省控制工程研究中心,天津300130

出  处:《电子技术应用》2018年第3期68-71,共4页Application of Electronic Technique

基  金:工信部合作资金资助项目(12-MC-KY-14)

摘  要:传统室内定位中聚类算法被动依赖定位环境中接入点(Acess Point,AP)数量,导致定位效率低、误差大,室内位置指纹定位研究中AP布局是影响定位精度的关键性因素。因此,采用Intel芯片的嵌入式微系统和美国Signal Hound生产的SA44B型测量接收机共同组成传感器网络,根据电波路径损耗建立室内定位的目标函数,采用单纯形法和模拟退火算法融合算法对目标函数进行优化,从而达到最合理的AP室内位置布局,而后改进K-means聚类算法将优化后的AP位置坐标作为初始聚类中心,来提高系统的定位效率和精确度。实验结果表明,与传统K-means算法相比,经过AP位置最优化后的聚类定位算法精度提高了13.8%。The traditional clustering algorithm passively depends on the number of Access Points( AP) deployed on indoor positioning environment, which leads to low efficiency and high positioning error. The layout of AP is a key factor which affects the positioning accuracy of indoor location fingerprint positioning. So a sensor network is built in this paper, which consists of the Intel chips embedded micro-system and the SA44 B measuring receivers produced by Signal Hound US. Firstly, the objective function of indoor positioning is established on the basis of the wave path loss theory. Next, the simulated annealing algorithm and the simplex fusion algorithm are used to optimize the objective function, and then the most reasonable layout of AP indoor location is achieved. Finally, the optimized AP position coordinates as the initial cluster centers that are modified by the K-means clustering algorithm, to improve the positioning efficiency and the precision of the system. The traditional K-means algorithm is used as the comparison object in the paper. The experimental results show that the precision of the clustering localization algorithm after the AP location optimization is improved by 13. 8 %.

关 键 词:室内定位 AP位置优化 模拟退火算法 单纯形法 嵌入式 频谱仪与测量接收机 

分 类 号:TN966.3[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象