检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《铁道学报》2018年第3期95-100,共6页Journal of the China Railway Society
基 金:中国铁路总公司科技研究开发计划(2015X009-H)
摘 要:行人检测一直是计算机视觉领域的热点和难点问题。本文提出了一种结合玻尔兹曼机RBM(Restricted Boltzmann Machine)和支持向量机SVM(Suport Vector Machines)的深度学习网络进行行人特征提取和分类,多层玻尔兹曼机无监督的训练网络参数得到行人特征并级联SVM构建特征分类器进行特征分类,在融合多种行人数据库的基础上扩充了行人数据样本,满足深度学习对于大数据量样本的要求。实验中对比了不同层数网络对于模型性能的影响以及与传统人工特征相比在复杂场景下的行人检测效果,验证了深度学习对于行人特征提取的有效性。Pedestrian detection has always been a hot and difficult issue in the field of computer vision.In this paper,a deep learning network that combines Restricted Boltzmann Machine(RBM)and Suport Vector Machines(SVM)was proposed for pedestrian feature extraction and classification.The unsupervised training network parameters of Multilayer Boltzmann Machine were used to get pedestrian characteristics,which were combined with SVM to construct the feature classifier for feature classification.Based on the integration of various pedestrian databases,the pedestrian training samples were expanded to meet the requirements of deep learning for large data samples.In the experiment,the effects of the networks with different layers on the performance of the model were compared.The pedestrian detection effect of this method was compared with traditional artificial features in complex scenes.The effectiveness of deep learning for pedestrian feature extraction was verified.
关 键 词:行人检测 玻尔兹曼机 支持向量机 无监督训练 深度学习
分 类 号:U298[交通运输工程—交通运输规划与管理] TP317[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.83.171