检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张洪侠[1] 郭贺[1] 王金霞 徐岩艳 吕斌[1] 闫东 常佳[1] 胡光瑞[1] 王雪[1] 李洪军[1] 刘天戟[1] 李燕林 赵志强 牛晓强 ZHANG Hong-xia;GUO He;WANG Jin-xia;et al(China-Japan Union Hospital of Jilin University ,Changchun 130033,China)
机构地区:[1]吉林大学中日联谊医院,吉林长春130033 [2]北京青梧桐健康科技有限公司
出 处:《中国实验诊断学》2018年第3期408-412,共5页Chinese Journal of Laboratory Diagnosis
摘 要:目的构建2型糖尿病发病风险预测模型。方法在体检人群中招募糖尿病患者53人,非糖尿病患者93人,体检的同时进行相应的基因检测,并填写健康体检自测问卷,收集全部数据采用XGBoost构建2型糖尿病预测模型。结果模型预测的准确率是86.6%,特征重要性评估结果显示,对模型贡献前三名的变量依次是血糖、甘油三酯和SLC30A8基因rs13266634-C位点的等位基因。结论 XGBoost糖尿病发病风险预测模型具有很强的预测能力。Objective To construct prediction models to estimate the risks of developing type 2 diabetes mellitus.Methods 53 persons with diabetes and 93 persons without diabetes from physical examination were Recruited for the study.To detect diabetes-related genes polymorphism and common clinical indicators of all volunteers.The volunteers also filled out self-measured questionnaires.XGBoost algorithm was used to construct diabetes prediction model to estimate risk of diabetes.Results The predictive accuracy of model is 86.6%.The first three variables that contribute to the model are fasting blood glucose,Triglyceride,SLC30 A8-rs13266634-C in the evaluation of relative importance of feature.Conclusion The prediction models we constructed have high predictability.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28