Optically Active Helical Polyisocyanides Bearing Chiral Phosphine Pendants: Facile Synthesis and Application in Enantioselective Rauhut-Currier Reaction  被引量:2

Optically Active Helical Polyisocyanides Bearing Chiral Phosphine Pendants: Facile Synthesis and Application in Enantioselective Rauhut-Currier Reaction

在线阅读下载全文

作  者:Li Zhou Ling Shen Jian Huang Na Liu Yuan-Yuan Zhu Zong-Quan Wu 

机构地区:[1]Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology [2]School of Material and Chemical Engineering, Bengbu University

出  处:《Chinese Journal of Polymer Science》2018年第2期163-170,共8页高分子科学(英文版)

基  金:financially supported by the National Natural Science Foundation of China (Nos. 21622402, 51673057 and 21574036);the 1000 plan Program for Young Talents of China

摘  要:Three novel enantiopure phenyl isocyanide monomers with BH3-protected phosphine functional group were designed and synthesized. Polymerization of these monomers using a alkyne-Pd(II) complex as a catalyst led to the formation of respective helical polyisocyanides in high yields with controlled molecular weights(Mns) and narrow molecular weight distributions(Mw/Mns). Removing the protecting BH3 groups afforded helical poly(phenyl isocyanide)s bearing phosphine pendants. Thanks to the chiral induction of monomer, the isolated helical polyisocyanides showed high optical activity, as revealed by circular dichroism(CD) and absorption spectroscopies and polarimetry. The helical structures of these polymers were quite stable in various organic solvents with different polarities and in a wide temperature range. Moreover, these helical polymers could be used as organocatalysts and showed good performance in enantioselective cross Rauhut-Currier reaction. The enantiomeric excess(ee) values of the isolated products of cross Rauhut-Currier reaction could be up to 90%. The polymer organocatalysts could be easily recovered from the reaction mixtures and reused at least five times in the reaction without significant loss of their enantioselectivities and catalytic activities.Three novel enantiopure phenyl isocyanide monomers with BH3-protected phosphine functional group were designed and synthesized. Polymerization of these monomers using a alkyne-Pd(II) complex as a catalyst led to the formation of respective helical polyisocyanides in high yields with controlled molecular weights(Mns) and narrow molecular weight distributions(Mw/Mns). Removing the protecting BH3 groups afforded helical poly(phenyl isocyanide)s bearing phosphine pendants. Thanks to the chiral induction of monomer, the isolated helical polyisocyanides showed high optical activity, as revealed by circular dichroism(CD) and absorption spectroscopies and polarimetry. The helical structures of these polymers were quite stable in various organic solvents with different polarities and in a wide temperature range. Moreover, these helical polymers could be used as organocatalysts and showed good performance in enantioselective cross Rauhut-Currier reaction. The enantiomeric excess(ee) values of the isolated products of cross Rauhut-Currier reaction could be up to 90%. The polymer organocatalysts could be easily recovered from the reaction mixtures and reused at least five times in the reaction without significant loss of their enantioselectivities and catalytic activities.

关 键 词:Helical polymer Polyisocyanide Coordination polymerization Polymer catalyst 

分 类 号:O641.4[理学—物理化学] O643.36[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象