C^(3)中曲面Kahler角的刚性定理(英文)  

Some rigidity theorems of the Kahler angle of surfaces in C^(3)

在线阅读下载全文

作  者:李慧 李兴校[2] LI Hui1 , LI Xing-Xiao(1. College of Mathematics, Sichuan University, Chengdu 610064, China 2. School of Mathematics, Henan Normal University, Xinxiang 453007, Chin)

机构地区:[1]四川大学数学学院,成都610064 [2]河南师范大学数学与信息科学学院,新乡453007

出  处:《四川大学学报(自然科学版)》2018年第2期243-250,共8页Journal of Sichuan University(Natural Science Edition)

基  金:国家自然科学基金(11671221,11371018)

摘  要:浸入到近复Hermit流形的曲面的Khler角是一个重要的不变量,可以用于刻画曲面偏离拟全纯曲线的程度.近年来,具有常Khler角的曲面仍是很有意义的研究对象.对于3维复欧氏空间C^3中具有常Khler角的曲面收缩子,本文证明了两个刚性定理.这些定理是有关C^3中曲面自收缩子的相应定理的直接拓展.The Kahler angle of a surface immersed in an almost Hermitian manifold is an important invar-iant which can be used to measure the deviation of the surface from being a complex (or pseudo-holomor- phic)one and, in particular, the surface with a constant K/ihler angle has been an interesting object in the study of submanifolds for years. In this paper, we prove two rigidity theorems for complete self- shrinkers of mean curvature flow with constant Kahler angle, which are immersed in the complex Eu- clidean space C3 of dimension 3. These are direct extensions of some known theorems for self-shrinkers immersed in C2

关 键 词:刚性定理 浸入曲面 Kahler角 自收缩子 

分 类 号:O186.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象