检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:田方 TIAN Fang(School of Mathematics, Research Center of Computational Mathematics and Financial Big Data, Shanghai University of Finance and Economics, Shanghai, 200433, P. R. Chin)
机构地区:[1]上海财经大学数学学院、上海财经大学计算数学与金融大数据研究中心,上海200433
出 处:《数学进展》2018年第2期175-181,共7页Advances in Mathematics(China)
基 金:Foundation item: This work is supported by NSFC (Nos. 11101256, 11271243) and China Scholarship Council (No. 201706485019).
摘 要:对于任意给定的正整数k,图G的距离匹配数um_k(G)是指任意两条边之间距离大于k的最大边数的集合.令G_(n,p)为经典Erds-Rényi随机图.Kang和Manggala刻画得到了当k≥2,边概率为p=c/n时稀疏Erds-Rényi随机图距离匹配数um_k(G_(n,p))的上界,其中c为足够大的常数.本文第一次利用二阶矩方法获得当k≥2时此类稀疏随机图距离匹配数的下界.For any positive integer k, the distance matching number, denoted by umk(G), is the largest size of a collection of edges in G such that no two edges are within distance k. Let Gn,p stand for the classic Erdos-Renyi random graph. Kang and Manggala presented an upper bound of umk(Gn,p) for k ≥ 2 and p = c/n with the constant c sufficiently large. In this paper, we firstly consider the lower bound of urnk(Gn,p) = Ω(logn) for k≥2 by the second moment method in this class of sparse random graphs.
关 键 词:距离匹配数 Erdos—Renyi随机图 二阶矩方法
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222