基于双多线激光雷达的非结构化环境负障碍感知技术  被引量:13

Negative Obstacle Perception in Unstructured Environment With Double Multi-beam LiDAR

在线阅读下载全文

作  者:蔡云飞[1] 石庭敏 唐振民[1] CAI Yun-Fei1, SHI Ting-Min1, TANG Zhen-Min1(1. School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 21009)

机构地区:[1]南京理工大学计算机科学与技术学院,南京210094

出  处:《自动化学报》2018年第3期569-576,共8页Acta Automatica Sinica

基  金:国家自然科学基金(61305134);核高基国家重大专项(2015ZX01041101);高等教育博士点基金(20133219120035)资助~~

摘  要:负障碍感知是非结构化环境下的难点问题,本文针对该问题提出一种新的基于双多线激光雷达(Light detection and ranging,Li DAR)的感知方法.采用分布嵌入式架构对双激光雷达数据进行同步采集与实时处理,将雷达点云映射到多尺度栅格,统计栅格的点云密度与相对高度等特征并标记,从点云数据提取负障碍几何特征,通过将栅格的统计特征与负障碍的几何特征做多特征关联找到关键特征点对,将特征点对聚类并过滤,识别出负障碍.方法不受地面平整度影响,已成功应用在无人驾驶车上.使用表明该方法具有较高的实时性和可靠性,在非结构化环境下具有良好的感知效果.t Negative obstacle perception is a difficult problem in unstructured environment, and a new negative obstacle percep- tion algorithm in unstructured environment with double multi- beam light detection and ranging (LiDAR) is proposed, Firstly, a distributed embedded architecture for LiDAR data acquisition and processing is designed. Secondly, LiDAR points are pro- jected to multi-scale gird maps and points density as well as relative height of each cell is computed, with each cell marked according to the feature. Then the geometric feature of negative obstacles is extracted from point cloud, the key points in pair are searched with both statistical characteristics and geometric features. Finally, clustering algorithm is used to recognize nega- tive obstacles. The algorithm does not depend on the flatness of the ground and has been successfully applied to an unmanned ground vehicle. The application shows that the algorithm is real-time, reliable and has good detection ability.

关 键 词:激光雷达 环境感知 负障碍 点云 

分 类 号:TN958.98[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象